

GROUNDWATER AND SURFACE WATER STUDY REPORT

SILVER CREEK TAILING SITE SUMMIT COUNTY, UTAH EPA ID# 980851404

Prepared by
The Utah Department of Health
In Cooperation With
U.S. Geological Survey

GROUNDWATER AND SURFACE WATER STUDY REPORT

SILVER CREEK TAILING SITE SUMMIT COUNTY, UTAH EPA ID# 980851404

Prepared by
The Utah Department of Health
In Cooperation With
U.S. Geological Survey

TABLE OF CONTENTS

		TABLE OF CONTENTS	۰.
LICT	OF T	PA ABLES AND FIGURES	u t
	UF 1/	ADLES AND FIGURES	11
1.0		DDUCTION	
2.0		ECT OBJECTIVE	
3.0		DESCRIPTION	. 2
	3.1	Site Location and History	. 2
	3.2	Description of Study Area	. 4
		3.2.1 Physiography	. 4
		3.2.2 Geology	. 4
	3.3	Surface Water Hydrology	. 4
	3.4	Groundwater Hydrology	5
	• • •	Groundwater Hydrology	- 5
		3.4.1.1 Recharge	٠,
		3.4.1.2 Movement	٠.
			.0
		3.4.1.4 Seasonal Water Fluctuations	. /
		3.4.1.5 Hydraulic Properties	.8
		3.4.2 Water in Consolidated Rocks	
		3.4.2.1 Recharge	. 9
		3.4.2.2 Movement	.9
		3.4.2.3 Discharge	10
		3.4.2.4 Seasonal Water Level Fluctuations	10
		3.4.2.5 Hydraulic Properties	
4.0 F	FIELD	ACTIVITIES	10
,,,,	4.1	Drilling	
	4.2	Slug Tests	11
	4.3	Sample Collection	, , , ,
	7.5	A 2 1 Groundwater Samples	1 1 1 1
		4.3.1 Groundwater Samples	11 12
		The same of the sa	12
		4.3.3 Tailings Characterization	12
5.0	AQUIF	ER INTERFERENCE TESTS	13
6.0		TICAL RESULTS	14
7.0		TY ASSURANCE	15
	7.1	Groundwater Route	15
		7.1.1 Round I	15
•		7.1.2 Round II	15
			15
		7.1.4 Round IV	16
	7.2		16
8.0			16
0.0			16
	8.2		16
	8.3		18
			19
	8.4		
9.0 1	TARGET		
	9.1	Groundwater	
	9.2	Surface Water Route	
10.0	CONCL	USIONS	20
	10.1	Tailings Characterization	21
	10.2	Groundwater	21
		Surface Water	
11.0		IMENDATIONS	
		S - ACKNOWLEDGEMENT	
68801			- •
	•		

LIST OF TABLES

TABLE 1 TABLE 2 TABLE 3 TABLE 4 TABLE 5 TABLE 6 TABLE 7 TABLE 8 TABLE 8 TABLE 9 TABLE 10 TABLE 11	Selected Monitoring Well Data							
LIST OF FIGURES								
FIGURE 1 FIGURE 2a FIGURE 2b FIGURE 3 FIGURE 4	Location of Study Area							
FIGURE 5 FIGURE 6 FIGURE 7	Seasonal Variation							
ATTACHMENTS								
ATTACHMENT A ATTACHMENT C ATTACHMENT C ATTACHMENT E ATTACHMENT E ATTACHMENT F ATTACHMENT F ATTACHMENT H ATTACHMENT I	Field Audit Report Modifications to Work Plan Outline for Student T-Test Interference Test Data Response to Comments E.P. Toxicity Data Sampling Data							

1.0 INTRODUCTION

In September of 1985, the Silver Creek Tailings site (also known as "Prospector's Square" and "Park City") was nominated by EPA for inclusion on the Superfund National Priorities List. The Superfund law expired in late 1985 and reauthorization of the program was delayed until October 17, 1986. During this period, no final National Priorities List decision was made by EPA on the Silver Creek Tailings nomination and no follow-up field work or work plan development occurred.

On October 17, 1986, the Silver Creek Tailings site was removed from its status as a proposed site on the National Priorities List pursuant to Section 118 (p) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The site was deemed removed from the NPL unless EPA determined that a potential threat to the public, welfare or the environment exists at the site. Section 118 (p) of SARA specified that such a determination shall be based "upon site specific data not used in the (previous) proposed listing of such facility". Pursuant to the passage of SARA, the U.S. Environmental Protection Agency, the State of Utah and Park City Municipal Corporation signed a Site Investigation Agreement for an expanded site investigation of the Silver Creek Tailings Site, Park City, Utah in July 1987.

This agreement between Park City, the State of Utah (STATE) and the United States Environmental Protection Agency Region VIII (EPA) establishes the roles and responsibilities, of these respective agencies (the "Participants") in completing an expanded site investigation and health assessment of the Silver Creek Tailings site in Park City, Utah. The purpose of the Site Investigation and health assessment is to determine if any releases of contaminants from the tailings at the site pose a threat to human health or the environment.

Specifically the study included:

- 1. Environmental sampling to determine whether contaminants are being released from the tailings through the air for ingestion, through the surface water to Silver Creek, or through the soils/groundwater to the shallow or deep aguifers underlying the site; and
- 2. A health assessment to determine whether any releases of contaminants from the tailings through these pathways present a threat to human health. The Agency for Toxic Substances and Disease Registry has already completed this study.

All activities conducted during this site investigation were described in, and accomplished in accordance with approved work plans, sampling plans, health/safety plans, and quality assurance project plans (QAPP), collectively referred to as project plans. A detailed Work Plan for the ground water/surface investigation was prepared and approved by the participants in May 1987. Modifications to the work plan were approved by all participants. These modifications are included in Attachment C. This report summarizes the findings of the groundwater/surface water study. A separate report for the air study is also being finalized. The Utah Health Department was designated as the lead agency for this study with input from all participants: Ecology and Environment, Inc. provided

the drilling and analytical support throughout the project. The U.S. Geological Survey provided their technical expertise and conducted all field activities jointly with the Utah Health Department and EPA.

2.0 PROJECT OBJECTIVES

The objectives of this study were five-fold. First, to determine if hazardous substances are being released to the groundwater and or surface water. Second, to characterize the groundwater/surface water in the area by studying physical/chemical parameters and their seasonal variations. Third, to determine if there is a hydraulic interconnection between the unconsolidated valley fill and the consolidated rock aquifer. Fourth, to study the geologic/hydrologic environment of the study area. Fifth, to study the approximate depth and volume of tailings in the area and their chemical composition.

3.0 SITE DESCRIPTION

3.1 SITE LOCATION AND HISTORY

The Silver Creek Mine Tailings/Prospector Square site is located approximately 30 miles east of Salt Lake City on the eastern flank of the Wasatch Mountain Range, in the NE 1/4, Section 9, NW 1/4, Section 10, Township 2 South, Range 4 East, Salt Lake Principal Meridian; Summit County, Utah (Figure 6). The tailings are located approximately one-half mile northeast of Park City's business district, at the intersection of Highway 224 and alternate U.S. 40.

The Park City District has been the site of precious metal mining since its discovery of silver in 1869. The processing of millions of tons of ore over the decades since the first discovery has generated a large volume of mine tailings. These mine tailings have been disposed in various areas near Park City, one such area is Prospector Square, which is the subject of this investigation.

Mill tailings were first deposited on Prospector Square in the early 1900's. It is suspected that some of the tailings were slurried to Prospector Square via Silver Creek. Mill tailings were deposited at Prospector Square until the 1930's. Mine tailings derived from the milling of precious metal ore generally contain elevated levels of heavy metals including arsenic, cadmium, chromium, lead and zinc. The tailings were uncontained, cover approximately 80 acres, range in depth from 1 to 10 feet and have been very accessible to the inhabitants of Park City. The tailings are a potential source of contamination to the area's surface water, ground water and air environments.

In the 1940's Pacific Bridge. Inc., reworked the tailings and used solvents and acids to extract (leach out) the residual silver that had remained in the tailings after the initial milling process. Pacific Bridge used an in-situ leaching process.

In the late 1970's commercial developers started building businesses at Prospector Square. The tailings were not covered and are still exposed in undeveloped areas of Prospector Square. This area has been undergoing rapid growth in the last several years. Currently, the site is occupied by roads, residences, landscape, parking lots, or retail buildings. Approximately two acres of uncovered tailings remain. However, plans are now being developed by Park City to cover the exposed tailings. Approximately 170 single family residential structures and many multi-family units have been built or are planned.

3.2 DESCRIPTION OF STUDY AREA

3.2.1 Physiography

The Prospector Square area lies within the Middle Rocky Mountains physiographic province (Fenneman, 1931). Altitudes range from about 6,700 feet on the valley floor to about 10,000 feet in the adjacent Wasatch Range to the southwest. The area is divided by a slight topographic high which results in two separate drainages. Most of the Prospector Square area is drained by Silver Creek which flows to the east; but, McLeod Creek, a tributary of East Canyon Creek, drains some of the northwestern part of the area and flows to the north.

3.2.2 Geology

Consolidated rocks in the Prospector Square area and the surrounding mountains range in age from Pennsylvanian through Tertiary, and the overlying unconsolidated valley fill is of Quaternary age (Figure 3). The consolidated rocks which crop out or underly the unconsolidated valley fill are of sedimentary origin with sandstone, limestone, shale, and quartzite being the most prevalent. The unconsolidated valley fill is primarily composed of alluvial deposits.

The region surrounding the Prospector Square area was structurally deformed by folding and faulting. The folding has resulted in most of the consolidated rocks in the study area dipping to the north and northwest (fig. 3). Most of the deformation is related to high-angle thrust faults and has resulted in a complex geologic framework with extensive fracturing in most of the consolidated rocks. In limestone, such as the Thaynes Formation, the fractures have been enlarged by dissolution. Due to the deformation properties of each type of rock, local fracture patterns are present but no regional fracture patterns are apparent.

3.3 SURFACE-WATER HYDROLOGY

Sources of streamflow in the Prospector Square area are rain or melting snow, direct groundwater discharge to the stream and drains and spring discharge. Silver Creek, which flows along the southern portion of the unconsolidated valley fill, derives its flow from runoff in the mountains south of Park City. Silver Creek exits the study area through a narrow canyon on the east side and flows towards Richardson Flat (Figure 1).

Holmes, Thompson, and Enright (1986, p. 11) report an estimated average annual flow of 0.8 cubic feet per second in the upstream portion of Silver

Creek south of Park City. The annual flow through the Prospector Square area probably would not be significantly greater due to the lack of significant inflow from other drainages or springs. Immediately south of the Prospector Square area, flow in Silver Creek is largest during spring runoff and usually goes dry during the summer months.

Most of the water in the Pace-Homer Ditch is derived from groundwater sources. The Pace-Homer Ditch originates near the Park Meadows Golf Course where it collects water from a series of ponds and drains. Dority Spring, the Pace and Homer Spring areas, and at least two drains also discharge water into the ditch in this area. The Pace-Homer Ditch probably receives some direct seepage of groundwater from the unconsolidated valley fill before it joins with Silver Creek east of Prospector Square.

The flow in the Pace-Homer Ditch is measured at a two-foot Parshall flume located above the first diversion where water is allowed to enter Silver Creek. Data are collected at the flume during the summer months (May through September) and the measurements of flow are compiled in the Weber River Distribution System annual reports. During years of normal precipitation, the discharge varies between about 3 and 6 cubic feet per second, with the long-term average discharge being about four cubic feet per second. Some water from the Spiro Tunnel, which usually flows into the East Canyon drainage, may be diverted through ditches into the Pace-Homer Ditch to fulfill water obligations to downstream water users in the Silver Creek drainage.

3.4 GROUNDWATER HYDROLOGY

Ground water within the Prospector Square area occurs in both unconsolidated valley fill and consolidated rocks. The unconsolidated valley fill is limited to the lower parts of the area, whereas consolidated rocks form the mountainous terrain surrounding the valley and underlie the unconsolidated valley fill. Although groundwater in the unconsolidated valley fill is not used for municipal and industrial purposes, there is concern about the quality of the water and whether there is a potential for movement into the consolidated rocks. Groundwater in the permeable consolidated rocks, such as the Thaynes Formation, is a primary source of municipal water. Records of observation wells are given in table 1, lithologic logs in table 2, water levels in table 3, and results of slug tests in table 4.

3.4.1 Water in Unconsolidated Valley Fill

Water in the unconsolidated valley fill generally is unconfined but may be semiconfined at depth. The unconsolidated valley fill in the Prospector Square area is primarily of alluvial origin. The deposits generally are poorly sorted and consist of clay, silt, sand, gravel, cobbles, and boulders. Some local deposits of well-sorted, coarse-grained material are present near the Pace-Homer Ditch. The unconsolidated valley fill underlying the Silver Creek Tailings Site is comprised of poorly sorted clay, sand, and gravel, with intermittent layers of clay.

The unconsolidated valley fill ranges in thickness from a few feet near hills and mountain fronts to at least 260 feet at the Pacific Bridge well. The fill is probably less than 20 feet thick where Silver Creek exits the area through a canyon on the east side of the study area.

3.4.1.1 Recharge

Recharge to the unconsolidated valley fill is derived from leakage from consolidated rocks, from stream losses from Silver Creek and other ditches, and from infiltration of precipitation and unconsumed irrigation water. Silver Creek is a primary source of recharge during the spring and summer months. Discharge measurements (table 5) show streamflow losses of 15 to 25 percent of the flow during normal to high flows and virtually 100 percent losses during low-flow conditions. Holmes, Thompson, and Enright (1986, p. 14) estimated that recharge to the unconsolidated valley fill from precipitation and unconsumed irrigation water to be 1 acre-foot per acre per year.

3.4.1.2 Movement

In theory, the conceptualized direction of groundwater flow in the unconsolidated valley fill would parallel the general slope and direction of the major streams. However, in the Prospector Square area, the water table surface of the shallow, unconsolidated valley-fill aquifer, shown in figure 4, indicates movement of water away from Silver Creek in a northeasterly direction. In the eastern portion of the study area, the general flow direction is to the east, toward the Pace-Homer Ditch. Seasonal water-level fluctuations would not substantially change the configuration of water-table surface and direction of flow.

A downward component of groundwater flow exists at three sites where monitoring wells were completed in the shallow unconsolidated valley fill and near the unconsolidated valley-fill/consolidated-rock contact. The downward vertical hydraulic gradient was measured to be about six feet at wells PS-MW-ls and PS-MW-ld. In the Prospector Square area near Silver Creek, the downward gradient was measured to be greater than 10 feet at wells PS-MW-5 and PS-MW-5d. Toward the east end of the Prospector Square area, the downward gradient was generally three feet as measured at wells PS-MW-7 and PS-MW-7d.

3.4.1.3 Discharge

Discharge from the unconsolidated valley fill in the Prospector Square area is primarily through seepage to drains and streams and subsurface outflow. Discharge by evapotranspiration is small. When phreatophyte vegetation was more prevalent, prior to residential development, discharge by evapotranspiration from plants probably was greater.

Seepage to drains and streams — Drains at the lower end of the area are used to dewater the shallow, unconsolidated valley fill. The discharge from two drains in the immediate area were measured at the time of sampling. During spring and summer months when groundwater levels are near their peak, the combined discharge was approximately 0.4 cubic feet per second; and during winter months, the combined discharge was approximately 0.1 cubic feet per second. A new sewer line that parallels the Pace-Homer Ditch and exits the area along Silver Creek may be considered a drain because the fill around the pipe may provide a conduit of high permeability through which groundwater may readily flow. Data were not collected to estimate discharge from this source.

Seepage from the unconsolidated valley fill to the Pace-Homer Ditch can be calculated by subtracting Dority Spring discharge, the discharge from the

drains, and the flow of any water diverted into the area from the Spiro Tunnel from the discharge at the Parshall flume below Prospector Square. Data necessary for this calculation were collected only during the interference test and the results are discussed later in this report.

Subsurface outflow -- Discharge by subsurface outflow is restricted to the narrow canyon on the eastern side of the area. The saturated thickness of the fill in the area is probably less than 20 feet, the gradient is small, and the permeabilities are low. Thus, the amount of subsurface outflow is small with the exception of the fill around the sewer line, where artificially high permeabilities may allow larger rates of groundwater flow.

3.4.1.4 Seasonal Water-Level Fluctuations

Seasonal water-level fluctuations in the unconsolidated valley fill are a result of fluctuations in recharge and discharge. The degree of fluctuation generally is related to the distance, both vertical and horizontal, from the source of recharge and points of discharge, the permeabilities of the fill, the rates of recharge and discharge, and storage coefficient. Water levels are lowest in winter months when recharge is minimal and are highest in spring months after maximum recharge has occurred due to melting snow and high flows in streams.

Monitoring wells PS-MW-4 and PS-MW-5, near Silver Creek, show large water-level rises in the spring, with most of the remaining monitoring wells showing water level rises of a lesser degree (fig. 5). Well PS-MW-5 responds more rapidly to the influence of Silver Creek than does PS-MW-5d which is open to a deeper zone. During the spring months, the downward hydraulic gradient in these two wells increased from more than 10 feet on February 25, 1988, to over 14 feet on May 5, 1988. Water levels in monitoring wells PS-MW-1d and PS-MW-14 and the Cartier well are not located near Silver Creek, but the rises may be due to increased leakage from other small streams or irrigation ditches in the area. Water-level rises in PS-MW-1d may be due to upward leakage from the underlying consolidated rocks which receive recharge from nearby low-lying hills where the consolidated rocks crop out.

Water-level declines in the monitoring wells generally are gradual and occur over a several-month period during the fall and winter. This indicates that discharge is an ongoing process throughout the year, whereas recharge is concentrated in the late winter-early summer period. The result is rapid water-level rises in the spring and summer followed by gradual declines during the fall and winter.

Generally, water-level fluctuations are smaller in wells located further to the northeast of Silver Creek. This is most noticeable in well PS-MW-11 where the water level only varies by about 1 foot. However, water-level changes in monitoring well PS-MW-9, located in the city park next to the Pace-Homer Ditch, respond rapidly and directly to the amount of flow in the ditch. Similarly, well PS-MW-10, located near Silver Creek east of the Prospector Square area, responds to the flow in the creek.

3.4.1.5 Hydraulic Properties

The U.S. Geological Survey performed slug tests on 16 of the 18 monitoring wells installed as part of this study. Monitoring wells PS-MW-13 and PS-MW-14 were not tested because grout probably imprenated the sand pack after completion of the wells, thus, leading to uncertainties in the results. A cylinder was lowered into the 2-inch-diameter monitoring wells and when the waste level in the well had returned to the original level, the cylinder was removed quickly and the recovering water levels were recorded at 2-second intervals using a pressure transducer and an electric data-logger. The data were analyzed using methods described by Bouwer and Rice (1976) and Cooper and others (1967). The solution described by Bouwer and Rice (1976), which was developed for unconfined conditions, is based on the assumption that the aguifer is isotropic; the solution omits storage in the aguifer, and treats the water table as a fixed, constant-head boundary. The solution described by Cooper and Others (1967) is based on the assumption that the aguifer is confined, isotropic, and not leaky. The monitoring wells tested in the Prospector Square area represent partially-penetrating piezometers in an anisotropic, unconfined aquifer, and, therefore, an appropriate analytical solution to the boundary conditions does not exist. As a result, the values for hydraulic conductivity in table 4 have been rounded to the nearest whole number, and, in some instances, where the data poorly matched the type surves. the values have been rounded to the nearest order of magnitude.

The values of hydraulic conductivity listed in table 4 were calculated based on the length of the production zone which is the thickness of the sand pack and this thickness varies in each monitoring well. The range of values for hydraulic conductivity, 1 to 14 feet per day, is similar to that representative of fine sands, silts, and mixtures of sand, silt and clay; and according to Chow (1964, p. 13-10), this range is representative of poor or the lower end of good aquifers, with three feet per day being the value separating poor from good aquifers. In wells at which the water-bearing material has a hydraulic conductivity of three feet per day or less, the predominant lithology is clay with interbedded silt, fine sand, and gravel. Wells at which the water-bearing material has a hydraulic conductivity of greater than three feet per day, the predominant lithology is the same, but layers of sand or sand and gravel may be present within the production interval.

The vertical hydraulic conductivity probably can be assumed to be at least one order of magnitude smaller than the horizontal hydraulic conductivity. Assuming one feet per day is representative of unsorted clay, sand, and gravel, then the vertical hydraulic conductivity probably would not be greater than 0.1 feet per day. This value could be considerably smaller where layers of clay are present.

3.4.2 Water in Consolidated Rocks

Consolidated rocks in the Prospector Square area are an important source of water due to their large areal extent and ability, locally, to yield large quantities of water to wells. The consolidated rocks crop out or are covered by a thin layer of unconsolidated valley fill in the higher altitudes of the area and in a large portion of the valley floor.

Extrusive igneous rocks of Tertiary age are present in the northeast corner of the study area but are not hydrologically important. However, most of the consolidated rocks are fractured with the movement of water primarily along these fractures. Consolidated rocks which yield the most water are Limestone, in which fractures have been enlarged by solution dissolution.

3.4.2.1 Recharge

Recharge to the consolidated rocks which underlie the Prospector Square area is primarily from precipitation and stream infiltration and occurs in the high-altitude areas bordering the western and southwestern part of the study area. Most of the precipitation, which exceeds 40 inches per year in the highest parts of the tributary area, falls as snow during winter and spring. Recharge to the consolidated rocks occurs after the soil crust has thawed sufficiently and soil moisture reaches saturation, thus allowing water to infiltrate through the thin veneer of soil. Recharge to the consolidated rocks due to stream losses also occurs in higher altitudes. Holmes, Thompson, and Enright (1986, p. 22) reported that these losses can be inferred if streamflow from a drainage basin is significantly smaller than the streamflow estimated from empirical equations incorporating drainage area and precipitation. Thaynes Canyon Creek, which heads in the mountains west of the Prospector Square area, generally has a smaller streamflow than would be expected and is probably a major source of recharge to the Thaynes Formation.

3.4.2.2 Movement

Water in the consolidated rocks generally moves from recharge areas at high altitudes to the discharge area at low altitudes. Water moves along faults and fractures due to the lack of primary permeability in consolidated rocks. Drain and mine tunnels have changed the direction of groundwater movement in some consolidated-rock formations. In some portions of the consolidated rock adjacent to the tunnels, groundwater now moves toward and discharges to these tunnels. Within the study area, not enough water-level information exists from the consolidated rocks underlying the unconsolidated valley fill to determine the direction of groundwater movement from one rock formation to another.

An upward vertical hydraulic gradient exists between the Woodside Shale and the overlying unconsolidated valley fill in the vicinity of the Pacific Bridge well. Water-level measurements at the Pacific Bridge well and the adjacent monitoring well, PS-MW-2, show an upward gradient of over 10 feet during the winter months and over 17 feet in early May (Table 3). Although data are available only in this local area, an upward gradient between the consolidated rocks and the overlying valley fill probably exists throughout most of the Prospector Square area.

A downward gradient in the unconsolidated valley fill, mentioned previously, and an upward gradient between consolidated rocks and the unconsolidated valley fill indicates the possible existance of a layer of well-sorted material at the base of the unconsolidated valley fill which can transmit water.

3.4.2.3 Discharge

Discharge from the consolidated rocks within the study area is primarily by springs, wells, and upward leakage to the unconsolidated valley fill. Several springs discharge from the Thaynes Formation at higher altitudes, but only one major spring, Dority Spring, has substantial discharge in the valley. Provided the Park Meadows well is not used, the flow from Dority spring may vary from about 0.5 to 2 cubic feet per second. Two wells are completed in consolidated rocks in the study area, but only the Park Meadows well, completed in the Thaynes Formation, is used when other sources for the municipal system do not provide enough water to meet demand. Discharge from the Park Meadows well may be as much as 1,200 gallons per minute. Due to low transmissivity and storage in the Woodside Shale and thus low yield, the Pacific Bridge well is not used as a source of municipal water.

3.4.2.4 Seasonal Water-Level Fluctuations

Seasonal fluctuations in the consolidated-rock aquifers are related to recharge at high altitudes and hydraulic properties of the rocks. Water-level fluctuations in the Pacific Bridge well, completed in the Woodside Shale, are quite large. Data collected during this study show a seasonal change of 14 feet, and data reported by Holmes, Thompson, and Enright (1986, p. 65) show a seasonal change of almost 23 feet. In contrast, seasonal fluctuations in the Park Meadows well completed in the Thaynes Formation are small. Water-level data collected by Holmes, Thompson, and Enright (1986, p. 65) indicate a seasonal variation of slightly more than three feet at a time when the Park Meadows well was not being used for municipal water.

3.4.2.5 Hydraulic Properties

Previously reported transmissivity values for the Thaynes Formation (Holmes, Thompson, and Enright; 1986, p. 67), which are based on aquifer tests, ranged from 2,400 to 7,400 feet squared per day. They reported that the transmissivity differences are due to the magnitude and number of fractures and solution openings rather than the inherent primary permeability of the rock. Additional transmissivity values for rocks in the Prospector Square area include 360 feet squared per day for the Weber Quartzite, 280 feet squared per day for the Woodside Shale, 200 feet squared per day for the Nugget Sandstone, and three to 73 feet squared per day for the Tertiary extrusive igneous rocks (Holmes, Thompson, Enright; 1986, p. 67). No aquifer test data are available for the Ankareh Formation and the Park City Formation. Due to the lack of peripheral observation wells during the tests mentioned above, values for storage could not be determined.

4.0 FIELD ACTIVITIES

4.1 DRILLING

Drilling was done in two phases. Phase I took place in July 1987 with the installation of two deep and eleven shallow monitoring wells. These wells were monitored to study the water quality at the site. Phase II drilling was done in January and February 1988 to install 5 deep wells. Phase II wells were drilled as part of an interference (pump) test which is discussed in section 5.0 of this report. Drilling activities reports are included in Attachment A.

4.2 SLUG TESTS

The USGS performed slug tests to calculate hydraulic conductivities. The results of these test are listed in Table 4 and are described in Section 3.4.1.5. of this report.

4.3 SAMPLE COLLECTION

The overall scope of the investigation involved the collection of 13 groundwater samples, 2 drain samples 5 surface water samples, 4 sediment samples, and 8 tailings samples. Tailings samples were collected during July-August 1987. Groundwater samples were collected in September 1987, December 1987, February 1988 and April 1988. Surface water/sediment samples were collected during April 1987, July 1987 and April 1988. Samples were collected at various intervals to observe possible seasonal variations in the water quality.

An approved work plan, sampling plan and health and safety plan was submitted to EPA and Park City on May 18, 1987. Performance evaluation, rinsate blank, field blank and duplicate samples were submitted to the laboratory with each set of samples. Additionally, each sample was split between the State of Utah, U.S. EPA and the U.S. Geological Survey. The State of Utah samples were analyzed by the State Health Laboratory, Salt Lake City, Utah. The U.S. EPA samples were analyzed by various contract laboratories, and the U.S. Geological survey samples were analyzed by the USGS Laboratory, Denver, Colorado.

Les Springer, U.S. EPA Environmental Services Division, conducted a field audit during the first round of groundwater sampling. He indicated that samples were being collected in accordance with the sampling plan and data obtained from these samples should be legally defensible. His report is included in Attachment B.

4.3.1 Ground-Water Samples

Ground-water samples for chemical analysis were collected on four separate occasions after the installation of the monitoring-well network. The first sampling occurred at the end of August and beginning of September 1987 before groundwater levels had begun the seasonal decline (fig. 5). Subsequent samplings took place at the beginning of December 1987, the end of February 1988, and the middle of April 1988. The two rounds of sampling during the winter occurred while groundwater levels were at a minimum; and the April sampling occurred while the overall groundwater levels were near their yearly highs.

The groundwater sampling procedure involved several specific tasks. Water-level measurements were made to determine the amount of water within the well casing. Three to five casing volumes of water subsequently were pumped from the well. During the first round of sampling, all purged water was contained pending the results of the chemical analyses. Temperature, pH, and specific conductance were measured at all sites during each sampling round. During the first round of sampling, alkalinity was determined and compared to values of alkalinity determined in the lab. Both values compared favorably for water from all wells and, therefore, field alkalinity determinations were

eliminated during the remaining rounds. Filtered samples were collected to determine concentrations of dissolved constituents. Unfiltered samples were collected for alkalinity, cyanide, chloride, and sulfate. The U.S. Geological Survey lab uses filtered water for chloride and sulfate determinations. In contrast, the State lab and the EPA contract labs use unfiltered water for these constituents. Monitoring well PS-MW-ls (background) was not sampled during the third round due to flooding from melting snow.

Large pH values in water from two monitoring wells, wells PS-MW-13 and PS-MW-14, indicated that the grout used in well installation moved around the bentonite seal and impregnated the sand pack. Therefore, these wells were not sampled to determine the quality of water due to the uncertainity of the results.

4.3.2 Surface Water/Sediment Samples

Five surface water sampling sites were established to monitor the quality of surface water above and below the tailings site. On both Silver Creek and the Pace-Homer Ditch, a site was located above and below the tailings site with the fifth site located downstream from the point where water from the Pace-Homer Ditch can be diverted into Silver Creek. Samples were collected at high, medium, and low flows for the period of the project. However, below-normal snowpack for the last two years has resulted in below normal runoff, and the flows observed during this study are probably not representative of long-term average flows.

During the sampling procedure, both filtered and unfiltered samples were collected for the analysis of dissolved and total constituents. Grab samples were taken rather than an integrated sample due to the small cross-sectional area of flow in the streams. Sediment samples also were collected from the banks of the streams at the surface water-air contact at the same time. Field measurements of stream discharge, temperature, specific conductance, pH, and alkalinity were measured at each sampling site (Table 5).

4.3.3 Tailings Characterization

Mill tailings were deposited in the Prospector Square area beginning in the early 1900's and continuing through the 1930's. Subsequently, in the 1940's, the mill tailings were reworked using an in-situ extraction process for the recovery of residual silver. The present sporadic occurrence of the mill tailings as shown by test-drilling during this study is a direct result of the reworking process. Tailings were encountered in three of the nine wells completed in the immediate mill tailings area. Tailings from wells PS-MW-3 and PS-MW-5 appeared to have been reworked and had the appearance of well-sorted, fine- to medium-grained, brown sand. In contrast, the tailings from well PS-MW-9 did not appear to have been reworked due to the presence of sphalerite and various forms of pyrite. The thickness of each tailings interval encountered is listed in table 1. Chemical analyses from a total metal extraction are listed in table 10. Ecology and Environment, Inc., the Field Investigation Team contracted by the EPA, has estimated the volume of mill tailings to be 46,740 cubic yards using an average tailings thickness of five feet and an area of 45 acres. However, this estimate may be considered high because tailings were only encountered in three of the nine monitoring wells during drilling.

5.0 AQUIFER INTERFERENCE TEST

As part of this study, an interference test was completed to determine the possible effects of pumping the municipal Park Meadows well on the water levels in the unconsolidated valley-fill deposits overlying the Thaynes Formation and in the adjoining tailings area. The primary question to be addressed was whether water in the unconsolidated valley fill underlying the Silver Creek Tailings site could move toward and into the Thaynes Formation and possibly contaminate the water withdrawn from the Park Meadows well.

To help answer these questions, an aquifer interference test was designed that involved pumping the Park Meadows well for 72 hours followed by 72 hours of recovery. To help determine effects on water levels near the Park Meadows well, two additional monitoring wells, located between the tailings area and the Park Meadows well, were drilled and completed near the base of the unconsolidated valley fill. In addition, three monitoring wells were completed at depths of 95, 138, and 85 feet in the unconsolidated valley fill underlying the tailings area. These five wells, plus the original 13 monitoring wells, the Pacific Bridge well, the Cartier well, Dority Spring pond and weir, and Pace Homer Ditch staff and flume were monitored during the test (fig. 2a. 2b). Water levels were measured in all wells for seven days prior to the test to establish water-level trends. Wells PS-MW-ld. PS-MW-l3. and PS-MW-14 were equipped with pressure transducers and data-loggers to give continous readings of water levels. Additional recorders were used to measure gage height at Dority Spring pond and discharge at Dority Spring weir continually. All other wells and the Pace-Homer Ditch staff gage and flume were measured every two hours during the first 12 hours of the test, every four hours for the next 24 hours, and approximately every 12 hours for the reamining 36 hours. All recorders were operated for several days after the pump was shut off, and periodic measurements were made at the other data collection sites.

No major problems occured during the test. The pump maintained a discharge rate of approximately 1200 gallons per minute during the test except when the pump shut down for approximately two hours after about 45 hours of pumping. The water level in the Park Meadows well recovered slightly (Attachment E); but no effects were seen at other wells. Weather conditions were ideal throughout the test with no warm temperatures causing excessive melting of snow which could have made it difficult to determine some of the effects on the streams in the area.

Water levels measured before, during, and after the pumping period (Attachment E) show that water levels in the Cartier Well and wells PS-MW-13 and PS-MW-14 were definitely affected by the pumping of the Park Meadows well. The greatest decline, about five feet, was recorded at well PS-MW-13. The water level in wells PS-MW-14 declined about two feet as did the level in the Cartier well which went dry on the second day of the test and remained dry for approximately 48 hours after pumping ceased.

Similar to the effects of previous interference tests, the pond at Dority Spring went dry and discharge ceased during the 72 hour test. Due to pumping of the Park Meadows Well, the water level in the Thaynes Formation was lowered such that discharge from the spring ceased after approximately 48 hours. About 24 hours elapsed after the pump was turned off before discharge from the

spring resumed. Measured spring discharge at the weir, about 150 feet downstream from the pond, resumed more than 72 hours before water began appearing in the pond due to an underground pipe which intercepts some discharge underneath the pond and delivers it to the channel downstream.

Water-level changes in the Pacific Bridge Well and well PS-MW-ld were due to changes in barometric pressure. Fluctuations in barometric pressure are plotted inversely (increase in pressure downward) on graphs which show both water-level change and barometric pressure (Fig. 6). Therefore, if water-level change was a function of barometric pressure, both curves should follow the same trend. This is very evident in the combined plot for the Pacific Bridge Well.

To observe any effects in the Pace-Homer Ditch due to the pumping, both a staff gage near well PS-MW-ll and a Parshall flume were monitored throughout the test. During the test, the water level in the Pace-Homer Ditch declined by 0.14 feet as measured at the staff gage. Flow in the Pace-Homer Ditch declined by 0.6 cubic feet per second, of which about 0.4 cubic feet per second was due to the elimination of discharge from Dority Spring. The remaining 0.2 cubic feet per second possibly may be due to a decrease in discharge from the unconsolidated valley fill and the Thaynes Formation into the Pace-Homer Ditch.

Wells PS-MW-9, located in the City Park at the lower end of the Prospector Square area, was affected during the test. Due to its close proximity to the Pace-Homer Ditch, water-level changes in this well are directly a result of decreased flow in the ditch. This relation is shown graphically in the plot which compares water level in PS-MW-9 to gage height as measured at the staff gage in the Pace-Homer Ditch.

Small fluctuations in PS-MW-1s, PS-MW-1d, PS-MW-2, PS-MW-3, PS-MW-4, PS-MW-7d, and PS-MW-1ld may have been due to pumping of the Park Meadows well or changes in recharge due to surface runoff of melting snowpack prior to the test and the lack of runoff during the test, or a combination of the two, but data were insufficient to identify the specific causes.

Effects due to pumping of the Park Meadows well appear to be limited to the unconsolidated valley fill overlying the Thaynes Formation. Observation wells located in Prospector Square are completed in the unconsolidated valley fill overlying the Woodside Shale and apparently are not affected by the pumping. Therefore, the pumping of the Park Meadows well does not cause water-level declines in the Woodside Shale and the overlying unconsolidated valley fill. Water-level declines in the unconsolidated valley fill above the Thaynes Formation are not sufficiently large to cause an effect in the unconsolidated valley fill overlying the Woodside Shale.

6.0 ANALYTICAL RESULTS

The results of analyses are shown in Tables 5 through 2. Samples were analyzed for Hazardous Substance Metals. Samples collected by EPA were sent to the Contract Laboratory Program (CLP) for analyses. Samples collected by the State of Utah were sent to the State Health Laboratory (SHL), Salt Lake City, Utah. The U.S.G.S. collected a selected number of samples, and these samples were sent to the U.S.G.S. laboratory in Denver, Colorado.

7.0 QUALITY ASSURANCE

The following steps were taken regarding the date quality assurance.

- 1. A detailed sampling plan (with input and consent from all parties) was prepared and followed during the field activities.
- 2. U. S. EPA Region VIII, Environmental Services Division conducted a field audit during the first round of groundwater sampling and concluded that the date collected during this investigation should be valid and defensible.
- 3. Field blanks, decontamination blanks and duplicate samples (as specified in the sampling plan) were collected for each round of sampling. A brief discussion of these results is given below. Data validation summaries stating spike recoveries, duplicate sample results and other quality control criteria are included in Attachment I.

7.1 GROUNDWATER

7.1.1 Round I

A duplicate sample was collected from MW-12. SHL analyses show relative percent differences (RPDs) less than 20% for each parameter except for iron and zinc. CLP data show RPD less than 20% for each parameter except for calcium, magnesium, manganese, potassium, and sodium. No contamination was found in the field blank and decontamination blank analyzed by the SHL and CLP. CLP data for barium, lead, selenium, silver and vanadium were partially qualified but usable.

7.1.2 Round II

A duplicate sample was collected from MW-9. SHL analyses show RPD less than 20% for each parameter. CLP data show RPD less then 20% for each parameter except for arsenic, iron, and sodium. CLP and SHL did not detect any contamination in field blank and decontamination blank. All the contaminants levels in the blanks were at or below their detection limit. A performance evaluation sample was submitted to CLP. Results for the performance evaluation sample were within the 95% confidence interval except for nickel, vanadium and zinc. All values reported by the SHL are within the 95% confidence interval.

Some cadmium data analyzed by the SHL did not match closely with the CLP and USGS lab and was flagged with a star (*). CLP data were partially qualified but useable.

7.1.3 Round III

A duplicate sample was collected from MW11. SHL analyses show RPD less than 20% for each parameter except for iron and zinc. CLP data show RPD less than 20% for each parameter except for cadmium, copper, lead, and mercury. SHL did not detect any contamination in the rinsate blank except for iron and zinc. A slightly higher value than the detection limit for cadmium was detected in the rinsate blank analyzed by the CLP. All values reported by the CLP for the performance evaluation sample were within the 95% confidence interval except for lead, mercury, nickel and vanadium. CLP data were partially qualified but useable.

7.1.4 Round IV

A duplicate sample was collected from MWllD. SHL analysis show RPD less then 20% for each parameters. CLP analysis indicate RPD less than 20% for each parameter. CLP and SHL did not detect any contamination in the field blank and decontamination blank. All the contaminant levels in the blanks were at or below the detection limit. Two performance evaluation samples (low range and high range) were submitted to SHL and CLP. SHL and CLP reported most values within the 95% confidence interval.

7.2 SURFACE WATER/SEDIMENT

Surface water/sediment samples were collected for three rounds. Surface water samples were analyzed for total and dissolved metals. The last round of surface water/sediment samples were collected in conjunction with the last round of groundwater samples. RPD's for duplicate samples were within 20% with a few exception and no contamination was found in the blanks.

8.0 DISCUSSION OF ANALYTICAL RESULTS

The objectives of this section are (1) to summarize the analytical results for the samples collected during groundwater, surface water, sediment and soil sampling and (2) to determine whether hazardous substances have been released from the site to the environment.

8.1 WASTE CHARACTERIZATION

Mill tailings were deposited in the Prospector Square area beginning in the early 1900's and continuing through the 1930's. Subsequently, in the 1940's, the mill tailings were reworked using an in-situ extraction process for the recovery of residual silver. The sporadic occurrence of the mill tailings as shown by test-drilling during this study is a direct result of the reworking process. Tailings were encountered in three of the nine monitoring wells completed in the immediate mill tailings area as shown in figure 2a. However, due to the reworking process, tailings may be present out of the original tailings pond area and the outline shown in figure 2a should be considered as the minimal areal extent. Tailings from monitoring wells PS-MW-3 and PS-MW-5 appeared to have been reworked and had the appearance of well-sorted, fine-to medium-grained, brown sand. In contrast, the tailings from monitoring well PS-MW-9 did not appear to have been reworked based on the presence of sphalerite and various forms of pyrite. The thickness of each tailings interval encountered is listed in table 1. Chemical analyses from a total metal extraction are listed in table 10. Ecology and Environmet, Inc., the Field Investigation Team contracted by the U.S. Environmental Protection Agency, has estimated the volume of mill tailings to be 46, 740 cubic yards using an average thickness of 5 feet. Due to the sporadic deposits of tailings, the assumed average thicknedd may be too large, thus, resulting in an overestimate for the tailings volume.

8.2 GROUNDWATER DATA

Chemical analyses of the water collected from the monitoring wells and drains indicate that the concentrations of major ions vary areally and vertically within the unconsolidated valley fill (Table 9). In water from

most of the monitoring wells and drains, the prevalent ions were calcium and sulfate, except in a dew wells where sodium and chloride predominated as shown in the trilinear diagram (Fig. 7). In water from monitoring well PS-MW-ls, the concentration of sodium was similar to the concentration of calcium, and the concentration of chloride was much greater then the concentration of sulfate. As expected, the specific conductance of the water in this well was large due to dissolved-solids concentration. The anomalous dissolved-solids concentration in water from this well compared to water from other wells in the Prospector Square area may be due to the storage of snow removed from city streets at this location. Road salt contained in the snow probably dissolved as the snow melted in the spring and the resulting melt water containing large concentrations of sodium and chloride infiltrated into the unconsolidated valley fill.

Water from monitoring well PS-MW-ld, which is next to monitoring well PS-MW-ls, also had a chloride concentration in excess of that of sulfate, but the concentrations similar to those in water from monitoring well PS-MW-ld were detected in water from monitoring well PS-MW-2, and concentrations similar to those in water from monitoring well PS-MW-ls were detected in water from PS-MW-3, but to a lesser degree. Monitoring well PS-MW-3 is located adjacent to Kearns Boulevard and water in this well also may be affected by the infiltration of water containing sodium and chloride from road salt. monitoring wells that were completed near the base of the unconsolidated valley fill, with the exception of well PS-MW-ld, generally yield water with low specific conductance values and wells PS-MW-5d, PS-MW-7d, PS-MW-11d, and PS-MW-12. The water from monitoring well PS-MW-5d, similar to that from wells completed in the shallow unconsolidated valley fill, has calcium and sulfate as the most prevalent ions, but in lower concentrations. The water from monitoring wells PS-MW-7d and PS-MW-11d had calcium and bicarbonate as the mose prevalent ions. The presence of bicarbonate and sulfate as the most prevalent ions. The low dissolved-solids concentrations in water derived from the base of the unconsolidated valley fill beneach the Silver Creek Tailings Site may indicate that ground water in the shallow unconsolidated valley fill does not sppear to move downward even though the hydraulic gradient is downward. If water from the shallow unconsolidated valley fill is moving downward, then the quantity of water is probably small and it is diluted at depth.

Concentrations greater than background levels for dissolved zinc were detected in water from six monitoring wells and one drain, and concentrations greater then background levels for dissolved manganese were detected in water from three monitoring wells and both drains. The dissolved-zinc concentration in water from monitoring wells PS-MW-4, PS-MW-5, and PS-MW-10 varied seasonally with the largest concentrations coinciding with high groundwater levels. The dissolved manganese concentration in water from monitoring wells PS-MW-4, PS-MW-5, and PS-MW-10 and drain PD-DR-2 also varied seasonally, but, unlike zinc, the highest concentrations coincided with the lowest ground-water However, the dissolved-manganese concentration in water from monitoring well PS-MW-10 followed the same pattern as that for dissolved zinc with the highest concentration coinciding with high ground-water levels. high dissolved-zinc concentrations may be related to the influx of water during the spring months with slightly low pH and more dissolved oxygen. Zinc may be more soluble under these conditions. In contrast, the high dissolved-manganese concentrations may be related to reducing conditions during the winter months, which coincide with low ground-water levels. This

is evident in water from drain PS-DR-2, where the concentrations of iron and manganese were high in December 1987.

8.3 STATISTICAL EVALUATION

Four rounds of ground water samples were collected during September and December 1987 and February and April 1988. The analytical results were reviewed, and questionable data points identified and flagged. Inspection of the data indicated that for most metal parameters the downgradient water quality is comparable to the upgradient water quality. Arsenic, Cadmium, chromium, manganese, and zinc, however, exhibited some differences in concentrations between upgradient and downgradient locations. Statistical testing was performed only for those parameters to determine whether the differences were significant.

For each of the parameters, comparison was made betweem the combined values from the upgradient or background wells and the combined values for all downgradient wells for each round of sampling and for each agency's data seperately. Questionable data was not used in the calculations and where data was reported as less than a particular detection limit value, one-half of the value and less than detection limit values as such were employed to perform the calculations.

The wells which were considered upgradient or background consisted of MW 1S, 1D, 12. The wells which were grouped to form the downgradient population include MW 2, 3, 4, 5, 6, 7, 8, 9 and 11. During Rounds 3 and 4, MW 5D, 7D, and 11D were also included in the downgradient group. Well PS-MW-10 which is located on Silver Maple Claim Property (another CERCLA site) and Drains 1 and 2 were sampled for informational purposes, but were not included in the statistical evaluation.

Cochran's approximation for the Behrens-Fisher Students t-test at the 95 percent confidence level was the statistical methodology employed to make comparisons between concentrations in the upgradient versus downgradient groups of wells. This method was selected because of the small sample size, and it's use in the Resource Conservation and Recovery Act (RCRA) program for the last 8 years to assess similar situations.

During Round 3, one of the upgradient wells (MW 1S) could not be sampled because of flooding problems and the lack of this date prevented any statistical testing during this round. In addition, questionable data, which was not used in the statistical evaluations, or lack of data prevented comparisons being made with particular agency data during other rounds. No statistically significant increases over background levels were found in any of the data sets for arsenic and chromium.

For cadmium, statistically significant increases over background were calculated in Round 1, (USGS and EPA data; insufficient State data), and Round 2, (EPA data; insufficient State and USGS data). As noted, Round 3 data could not be evaluated. Neither the State nor the EPA data (USGS data was insufficient) indicated a significant increase in Round 4. The significant increases over background for cadmium seem to be largely due to the contribution from MW8 where concentrations ranged from 14 to 20 ug/l. This is the only well in which any valid cadmium concentrations exceed the primary drinking water standard of 10 ug/l.

Statistically significant increases over background for manganese were calculated in round 2 and 4 (State and EPA data; insufficient USGS data). The major contributors to this increase appear to be MW9 with concentrations of 1,300 to 1,500 ug/l and MW4 with concentrations of 1,800 to 2,250 ug/l during Round 2. Most of the downgradient and many of the upgradient manganese values during all sampling rounds are in excess of the secondary drinking water standard of 50 ug/l. This is not a health-based standard but rather is based upon the staining properties of manganese which may be manifest at this and higher concentrations.

The zinc data showed statistical increases over background during Round 1 (all three data sets), and Round 2 and 4 (State and EPA data; USGS data insufficient). Wells MW 4, 5, 6, 7 and 8 were those which had the largest increases over background with individual values in the 2,000 to 3,000 ug/l range. However, it should be noted that even the highest value detected, 3,210 ug/l, is still well below the secondary drinking water standard of 5,000 ug/l.

8.4 SURFACE-WATER SEDIMENT DATA

The quality of water in the Silver Creek drainage is quite different from that of water in the Pace-Homer Ditch, reflecting the different origins of the water. Water in Silver Creek upstream from the point where water from the Pace-Homer Ditch can enter Silver Creek has a larger specific conductance than the water in the ditch. Similarly, pH in Silver Creek generally is greater; however, the alkalinity is less than in the Pace-Homer Ditch. The major ions appear to be different for the stream and ditch (Table 6); but this may not necessarily be true. During high flows in the spring, the major ions in Silver Creek are sodium and chloride, but during low-flows in the summer, the major ions are calcium and sulfate. The presence of sodium and chloride in the spring may be due to surface runoff of water containing dissolved road salt. In the Pace-Homer Ditch, the major ions are calcium and sulfate regardless of the volume of flow.

The water at the sampling site on Silver Creek downstream from Prospector Square (Fig. 2b) consists of water from several sources, and generally reflects the water chemistry of the primary source at the time of sampling. During surface—water sampling in April 1987 and in April 1988, both Silver Creek and the Pace-Homer Ditch contributed water for the combined site. As expected, specific conductance, pH, and alkalinity were less during both April samplings than during the low flow sampling in July 1987, when Silver Creek was dry downstream from Wyatt Earp Drive.

Chemical analyses of filtered water collected from surface-water sites indicated that concentrations of dissolved cadium, manganese, and zinc were greater than background concentrations only during low-flow conditions (Table 6). Concentrations of dissolved cadmium, manganese, and zinc that were greater than background were not detected during low flow at the upstream site on Silver Creek at Bonzana Drive; but the water collected during low flow from Silver creek at Wyatt Earp Drive had concentrations of dissolved manganese and zinc that were about 10 times greater than concentrations measured during average or high flow. Similarly, the dissolved-cadmium concentration at this site was about 15 micrograms per liter at low flow; whereas, only about 2 micrograms per liter cadmium was detected during high flow.

Water collected at the site on Silver Creek downstream from Prospector Square also had concentrations of dissolved manganese and zinc that were greater than background concentrations along with a detectable concentration of dissolved cadmium during low flow; however, the concentrations were less than those at the site at Wyatt Earp Drive. As mentioned above, Silver Creek was dry downstream from Wyatt Earp Drive, and the primary source for the water at the site on Silver Creek downstream from Prospector Square appears to have been drain PS-DR-1. Similar values of specific conductance and alkalinity along with similar values of specific conductance and alkalinity along with similar concentrations of dissolved cadmium, manganese, and zinc in water at the site on Silver Creek downstream from Prospector Square and in water from drain PS-DR-1 support the conclusion that little or no water was being contributed by flow in the Pace-Homer Ditch.

Despite more than 2 cubic feet per second of flow in the Pace-Homer Ditch, practically all of this water continued down the ditch with only a small quantity leaking into Silver Creek. Therefore, in July 1987, water at the site on Silver Creek downstream from Prospector Square appears to be from drain PS-DR-1, which discharges into Silver Creek downstream from the City Park.

Chemical analyses of unfiltered water collected at the surface-water sites have concentrations (table 7) similar to those detected in the filtered water (table 6). The only substantial differences are the much greater concentrations of total iron and lead in unfiltered samples collected at the three sites along Silver Creek. During the first round os surface-water sampling in April 1987, total-iron and total-lead concentrations were largest at the upstream site at Bonzana Drive and decreased downstream. The concentrations of these constituents also decreased in subsequent rounds of sampling at all sites on Silver creek. Therefore, the suspended iron and lead in the water appears to be due to a disturbance of surficial deposits upstream prior to the first round of sampling, which was not repeated prior to later rounds of sampling.

Chemical analyses of stream sediment are presented in table 8. Varying concentrations of all selected metals were present, with the largest concentrations being totel-recoverable iron, lead, manganses, and zinc. No distinct pattern among sites and sampling rounds is apparent. Sediment from the site on the Pace-Homer Ditch downstream from Prospector Square had concentrations similar to the sites on Silver Creek, indicating that the ditch. like Silver Creek, is probably cut through tailings.

9.0 TARGETS

9.1 GROUNDWATER ROUTE

Park City draws it municipal water from mine tunnels and the Park Meadows well. The Park Meadows well is located within a 3-mile radius from the site and is completed in the Thaynes Formation. The Pacific Bridge well is the only well located on site but it is no longer in use. The residents of Prospector Square receive their drinking water from the Park City Public water supply system. The Cartier well (a shallow hand dug well) is also located within a 3-mile radius from the site, but it is not currently being used for drinking water purposes.

The aquifer of concern in this area is the Thaynes Formation, in which the Park Meadows well is located. Based on current hydrologic conditions, groundwater underlying the tailings area does not appear to be moving towards the Park Meadows well. Therefore, it appears that there is no target population for the groundwater route.

9.2 SURFACE WATER ROUTE

The Silver Maple Claim Property (another CERCLA site) is located downstream of Prospector Square adjacent to its eastern boundary. Silver Creek flows through the Silver Maple Claim site after it exits the Prospector Square area. Silver Creek then flows east about two miles to Richardson Flat (an NPL site). Currently there are no known uses of Silver Creek between Prospector Square and Richardson Flat. The target population for the surface water route appears to be minimum to non-existent.

10.0 CONCLUSIONS

Based on the date collected, the following conclusions may be drawn from the study:

10.1 TAILINGS CHARACTERIZATION

- It is estimated that 46,740 cubic yards of tailings are present on site.
- 2. The tailings contain elevated levels of arsenic, cadmium, chromium, iron, lead, manganese, zinc and other metals as shown in Table 10.

10.2 GROUNDWATER

- 1. The ground water sampling data were collected for four rounds (September, 1987; December, 1987; February, 1988; and April, 1988). Samples were split among USGS, EPA and State of Utah. Data indicate a statistically significant release for zinc for each round of sampling. Some data also indicate statistically significant releases for cadmium and manganese. However, these releases (cadmium and manganese) were not observed during each round and were not supported by all data. Downgradient water quality appears to be comparable to the background for all metals except zinc, cadium, and manganese.
- 2. The primary drinking water standards were met for all parameters in all wells except well PS-MW-8 (downgradient) which exceeded the standard for cadmium. The secondary drinking water standard for iron was met in all upgradient locations, but was exceeded in PS-MW-9.
- 3. The interference test (pump test) results show that water levels in the onsite monitoring wells (except MW-9 which is influenced by the flow of Pace Homer Ditch) were not significantly impacted by the pumping of the Park Meadows Well. Based on the present hydrologic conditions in the unconsolidated valley fill such as hydraulic gradient, horizontal and vertical hydraulic conductivities, and the present distribution of ground-water withdrawal from the consolidated

rocks, water underlying the tailings area does not appear to be moving toward the Park Meadows Well (see section 3.4 of text).

10.3 SURFACE WATER

- The downstream surface water quality for Silver Creek is comparable to background except for cadmium, manganese, and zinc in both filtered and unfiltered samples. During the second round of sampling, ten fold increases in concentrations of these metals were observed downstream as compared to upstream samples. However, due to the lack of an adequate number of samples, it can not be determined if a statistically significant release has occurred. The surface water quality in Pace-Homer Ditch is comparable in both upstream and downstream locations for filtered and unfiltered samples.
- 2. The primary drinking water standard for cadmium was exceeded at the downstream location on Silver Creek for the filtered and unfiltered samples.
- 3. The Silver Creek is classified as 3A, 1C, and 4 by the State of Utah. Cadmium levels during the second round of sampling downstream on Silver Creek were elevated compared to the 3A, 1C, and 4 classification standards. However, the classification standards are extablished for a one hour composite sample, and during the sampling activity for this study only grab samples were collected.

11.0 RECOMMENDATIONS

1. Data collected during the groundwater investigation indicate that the tailings in the Prospector Square area are affecting groundwater quality in the unconsolidated valley fill. However, under current hydrologic conditions, groundwater in the Prospector Square area does not appear to be moving toward the Park Meadows Well. In addition, groundwater analyses in the Prospector Square area indicate that drinking water standards were exceeded only in well PS-MW-8.

It is therefore recommended that future groundwater development in the area be closely monitored to ensure that existing groundwater sources are not adversely impacted by migration of groundwater from the Prospector Square area into usable water sources. In addition, groundwater development in the unconsolidated valley fill underlying Prospector Square should be prohibited. It also is recommended that existing geohydrologic relationships be monitored to ensure that conditions do not change in a manner that will result in migration of contaminated groundwater into useable groundwater sources.

2. Data collected during the surface water investigation indicate that the tailings in the Prospector Square area are affecting the water quality of Silver Creek, and that the drinking water standard for cadmium is exceeded in Silver Creek near the eastern side of Prospector Square. In addition, Silver Creek is classified as 3A, 1C and 4 by the Utah Bureau of Water Pollution Control and the data indicates that cadmium standards for these classifications may also be exceeded. Therefore, action should be taken that will eliminate contact between Silver Creek and the tailings material.

ACKNOWLEDGEMENT

Sections 3.2, 3.3, 3.4, 4.3.1, 4.3.2, 4.3.3, 5.0, 8.1, and 8.2 of this report were prepared by the U.S. Geological Survey. Drilling reports were prepared by Ecology and Environment, Inc. (Field Investigation Team).

REFERENCES

Bouwer, H. and Rice, R. C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, vol. 12 no. 3, p. 423-428.

Broomfield, C. S., and Crittenden, M. D., Jr., 1971, Geologic map of the Park City East quadrangle, Summit and Wasatch Counties, Utah: U.S. Geological survey Geological Quadrangle Map GQ-852, scale 1:24,000.

Chow, V. T., 1964, Handbook of applied hydrology: McGraw-Hill, New York.

Cooper, H. H., Jr., Bredehoeft, J. D., and Papadopulos, I. S., 1967, Response of a finite-diameter well to an instantaneous charge of water: Water Resources Research vol. 3, no.1, p. 263-269.

Crittenden, M. D., Jr., Calkins, F. C., and Sharp, B. J., 1966, Geologic map of the Park City West quadrangle, Utah: U.S. Geological Survey Geological Quadrangle Map GQ-535, scale 1:24,000.

Fenneman, N. M., 1931, Physiography of the Western United States: New York, N.Y., NcGraw-Hill, 534 p.

Holmes, W. F., Thompson, K. R., and Enright, M., 1986, Water resources of the Park City area, Utah with emphasis on ground water: Utah Department of Natural Resources Technical Publication No. 85, 81 p.

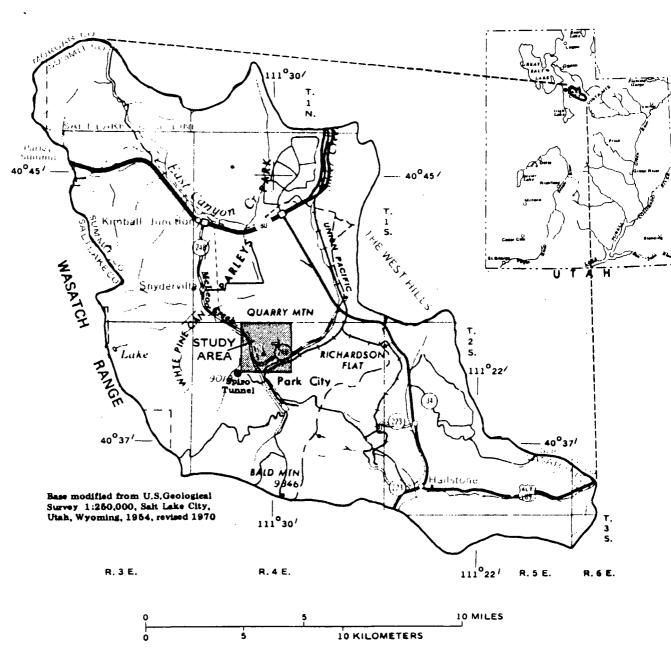


Figure 1.--Location of study area.

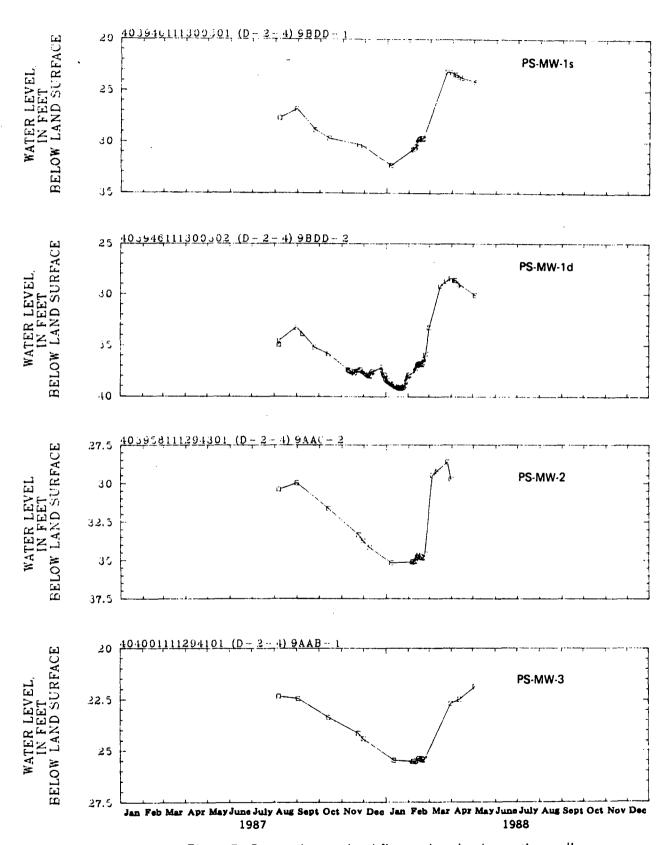


Figure 5.--Seasonal water-level fluctuations in observation wells.

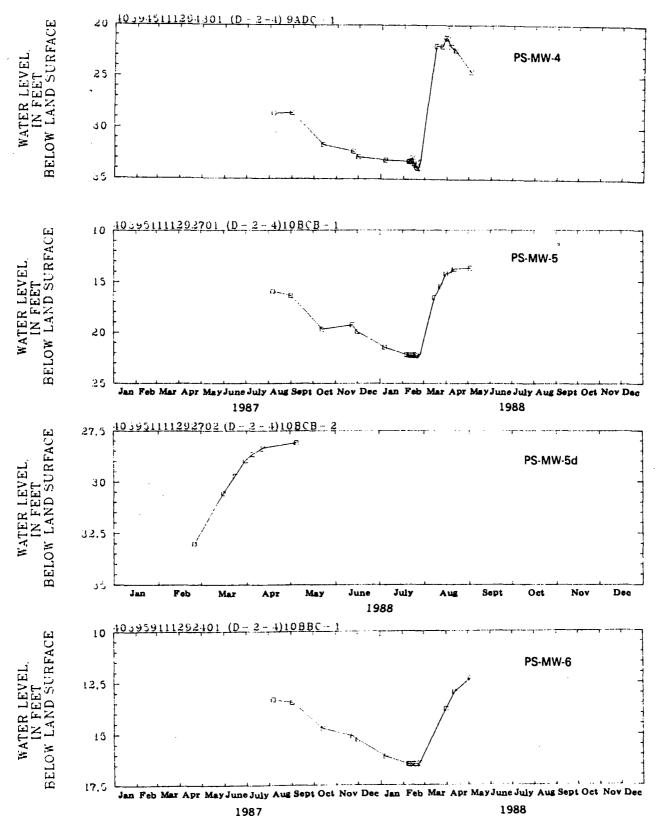


Figure 5.--Seasonal water-level fluctuations in observation wells--Continued.

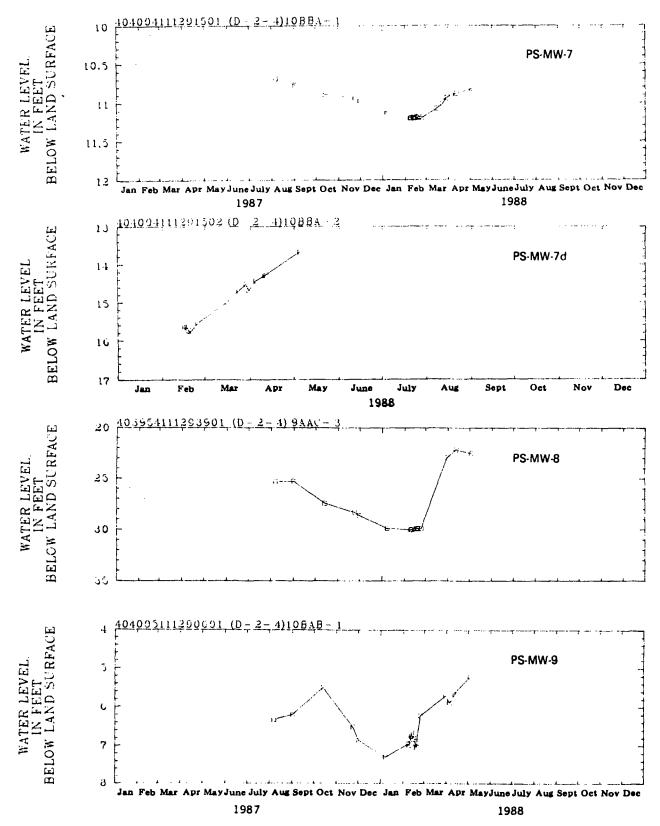


Figure 5.--Seasonal water-level fluctuations in observation wells--Continued.

- WELL
- DRAIN
- — TAILINGS POND-As shown on U.S. Geological Survey Park City East, 1:24,000, 1955

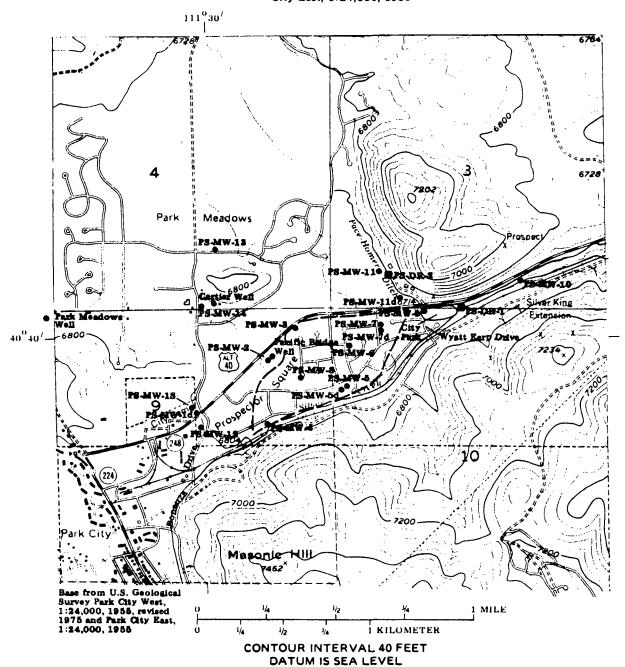


Figure 2a.--Location of ground-water sites in Prospector Square area, Summit County, Utah.

- **▲ WATER-QUALITY DATA-COLLECTION SITE**
- ▼ AQUIFER-INTERFERENCE TEST DATA-COLLECTION SITE

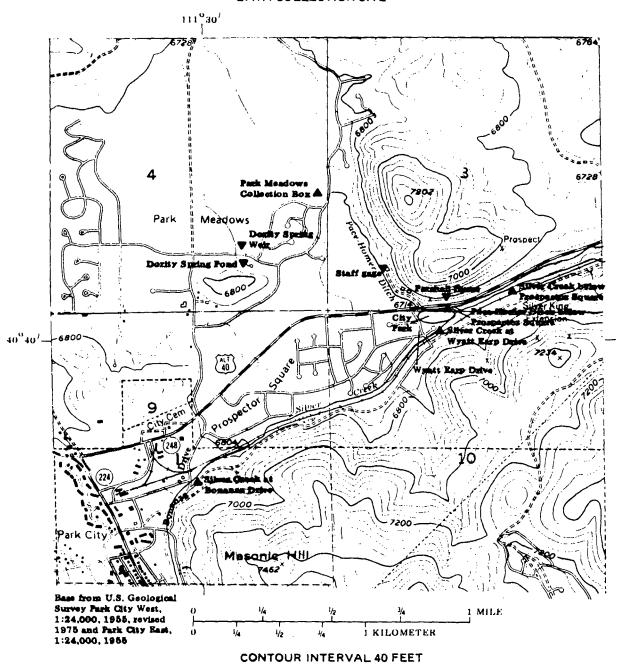


Figure 2b.--Location of surface-water data-collection sites in Prospector Square area, Summit County, Utah.

DATUM IS SEA LEVEL

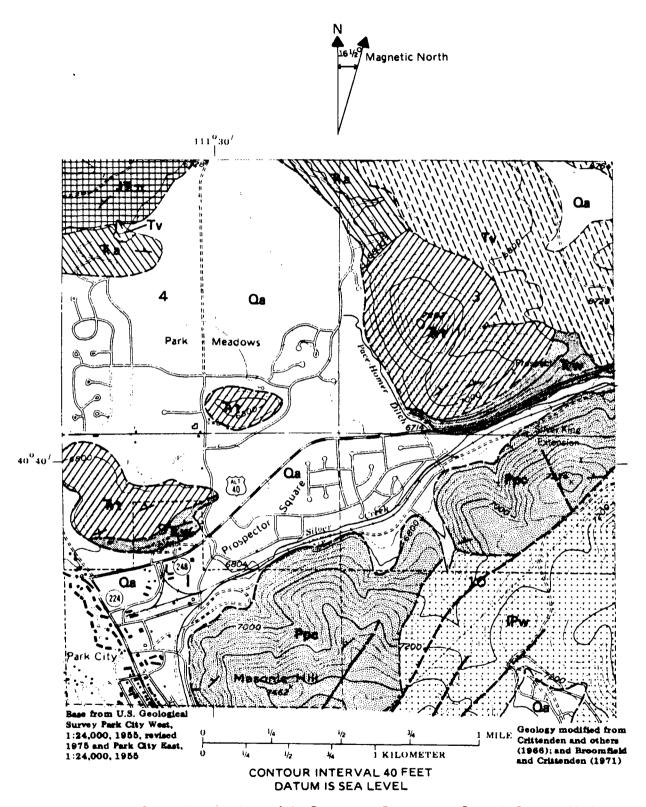


Figure 3.--Generalized geology of the Prospector Square area, Summit County, Utah.

QUATERNARY	Qa	ALLUVIAL DEPOSITS—Poorly sorted mixture of material ranging in size from clay to boulders. Beds appear to be lenticular and discontinuous
TERTIARY		IGNEOUS ROCKSPrimarily extrusive igneous rocks, chiefly andesitic pyroclastics with some intercalated flow rocks
JURASSIC		NUGGET SANDSTONEPale-orange, medium-grained, cross-bedded sandstone
TRIASSIC		ANKAREH FORMATION—Reddish-brown, reddish-purple, or bright-red shale, mudstone, and sandstone in upper and lower parts. Massive, cross-bedded, white to pale-purple, coarse-grained to pebbly quartzite in middle part
	77572	THAYNES FORMATION—Brown—stained, fine-grained limy sandstone and siltstone interbedded with olive—green to dull—red shale and gray, fine-grained, fossiliferous limestone
	Rw	WOODSIDE SHALE-Dark-red or purplish-red shale
PERMIAN	Ppc	PARK CITY FORMATION—Pale-gray-weathering fossiliferous and cherty limestone containing a medial phosphatic shale member
PENNSYLVANIAN	{ IPW	WEBER QUARTZITE—Pale—gray, tan—weathering quartzite and limy sandstone with some interbedded gray to white limestone and dolomite
		CONTACTDashed where approximately located
		HIGH-ANGLE FAULT-Dashed where approximately located
	/	STRIKE AND DIRECTION OF DIP OF BEDS

----- WATER-TABLE CONTOUR—Shows altitude of the water table. Dashed where approximately located. Contour interval 10 feet. Datum is sea level

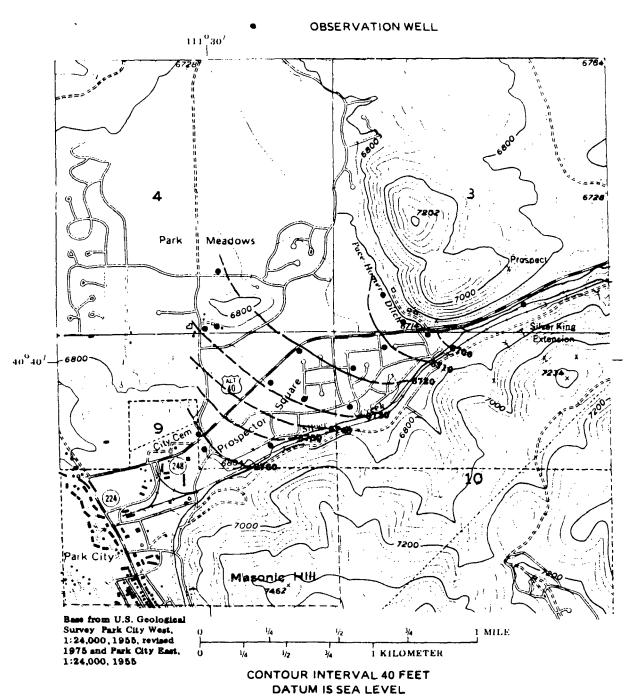


Figure 4.--Map of the Prospector Square area showing the water table in the shallow unconsolidated valley-fill aquifer, April 1988.

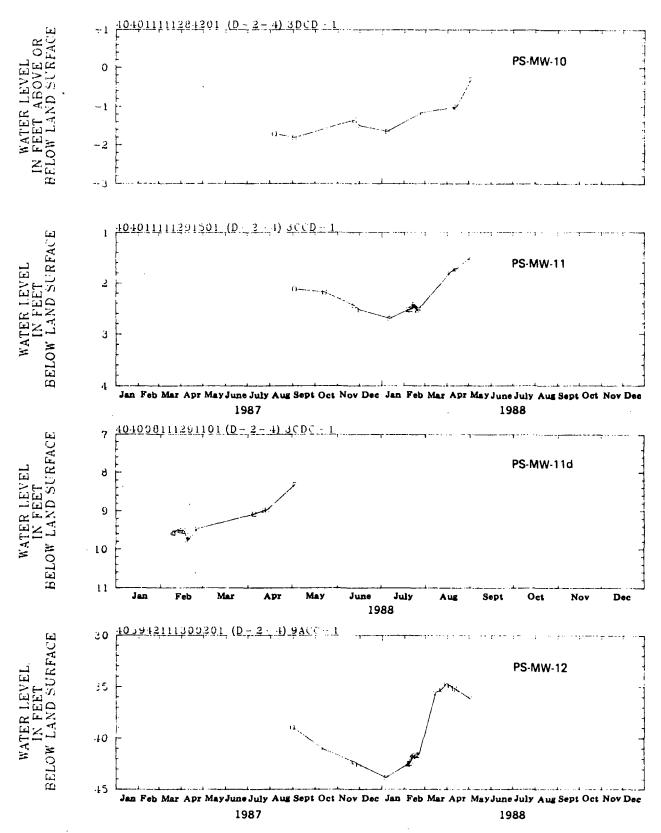


Figure 5.--Seasonal water-level fluctuations in observation wells--Continued.

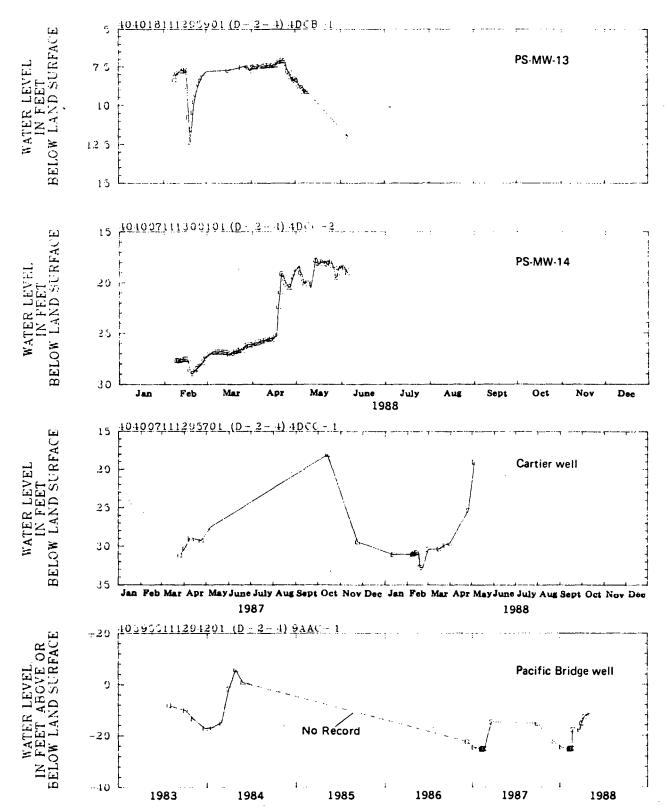


Figure 5.--Seasonal water-level fluctuations in observation wells--Continued.

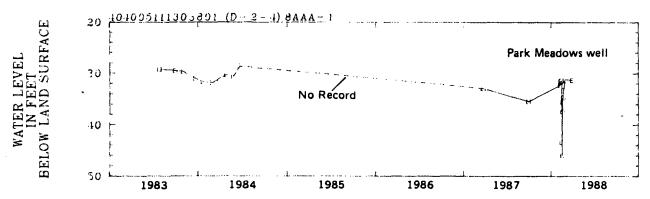
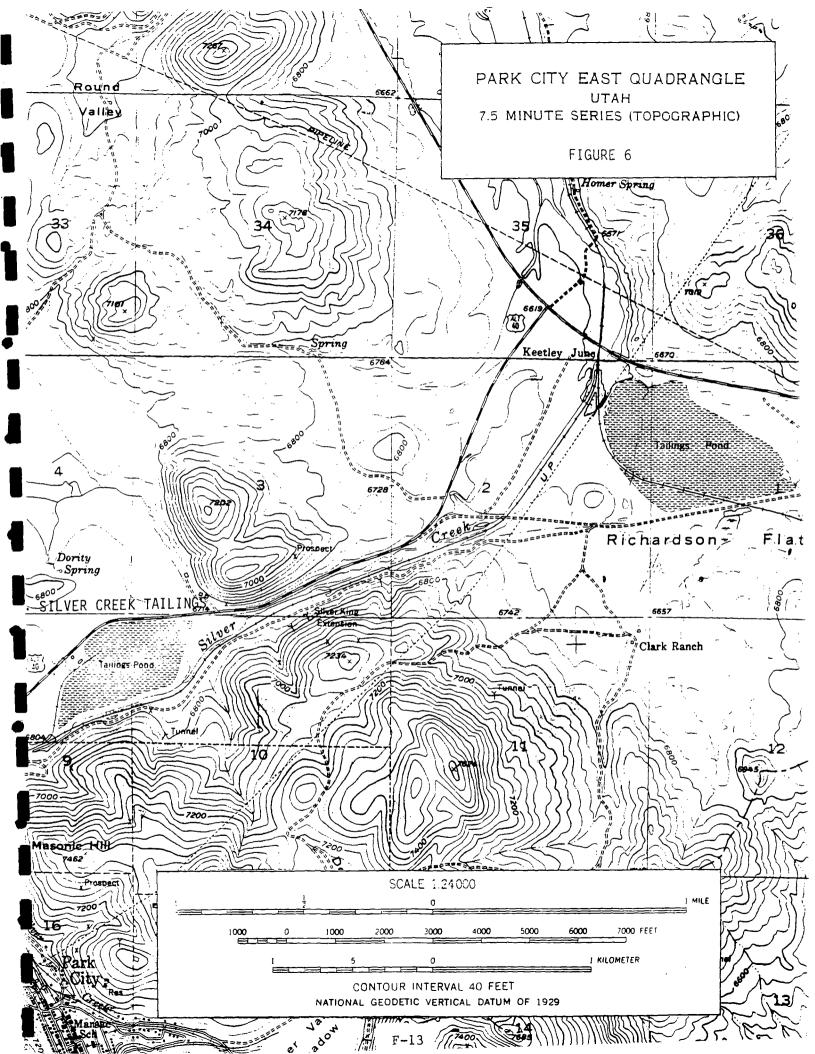



Figure 5.--Seasonal water-level fluctuations in observation wells--Continued.

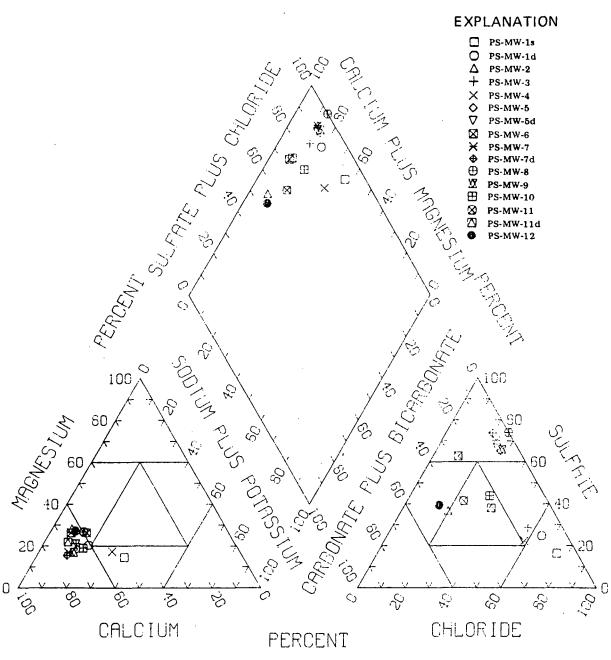


Figure 7.--Chemical composition of water from monitoring wells completed in the unconsolidated valley fill.

Table 1.--Selected data for 3 observation wells and 18 monitoring wells

Altitude of land surface: Surveyed altitudes given in feet and decimal fractions; altitudes interpolated from U.S. Geological Survey topographic maps given to nearest foot.

Screened interval: Upper and lower limits of screen given in feet below land surface, P indicates perforated

Production interval: Upper and lower limits of the well that are open to the aquifer material, given in feet below land surface.

Principal water-bearing unit: Trt, Thaynes Formation; Trw, Woodside Shale; Qa, unconsolidated valley fill. Tailings interval: Upper and lower limits of tailings given in feet below land surface. Other available data: C, water-quality data in table 9; L, lithologic logs in table 2; and W, water-level data

in table 3.

Well identfier	Depth of borehole (feet)	Altitude of land surface (feet)	Screened interval (feet)	Production interval (feet)	Principal water- yielding unit	Tailings interval (feet)	Other available data				
			OBSE	RVATION WELLS							
Park Meadows Well	320	6,751.75	100-113(P)	100-165	Trt		L,₩				
Pacific Bridge Well	446	6,759.73	300-446(P)	300-446	Trw		L,W				
Cartier Well	33	6.750.22			Qa		L,W				
MONITORING WELLS											
PS-MW-1s	47.0	6,791.87	35.0-40.0	32.5-45.5	Qa		C,L,W				
PS-MW-1d	85.5	6,791.06	70.0-80.0	62.0-80.0	Qa		C,L,W				
PS-MW-2	44.5	6,758.44	33.0-38.0	29.0-44.5	Qa		C,L,W				
PS-MW-3	36.0	6,743.35	25.5-30.5	19.0-35.5	Qa	1.0-2.0	C,L,W				
PS-MW-4	45.0	6,773.42	34.0-39.0	17.0-45.0	Qa		C,L,W				
PS-MW-5	33.0	6,741.04	23.0-28.0	20.0-33.0	Qa	0.6-1.4 4.5-9.0	C,L,W				
PS-MW-5d	95.5	6,741.99	83.0-93.0	81.0-95.0	Qa	do	C,L,W				
PS-MW-6	29.0	6,731.48	19.0-24.0	14.0-29.0	Qa		C,L,W				
PS-MW-7	25.5	6,722.46	15.5-20.5	11.5-25.5	Qa		C,L,W				
PS-MW-7d	138.0	6,722.59	120.0-130	116.0-134.0	Qa		C,L,W				
PS-MW-8	40.5	6,751.41	28.5-33.5	19.5-40.0	Qa		C,L,W				
PS-MW-9	16.5	6,707.90	8.5-13.5	5.0-15.5	Qa	1.5-2.0 2.4-3.5	C,L,W				
PS-MW-10	13.0	6,680	6.0-11.0	4.9-11.5	Qa		C,L,W				
PS-MW-11	21.5	6,711.19	10.0-15.0	3.5-20.0	Qa		C,L,W				
PS-MW-11d	85. 0 ,	6,715.89	69.8-79.8	66.0-79.8	Qa		C,L,W				
PS-MW-12	1 2 5	6,797.70	110.0-120.0	98.5-120.0	Qa		C,L,W				
PS-MW-13	61.0	6,728.42	41.0-51.0	38.0-52.0	Qa		C,L,W				
PS-MW-14	75.0		48.5-58.5	43.0-63.5	Qa	~-	C,L,W				

Although the completed well was originally 300 feet deep, a recent televiewer log shows that the borehole wall has caved in the uncased part of the well below a depth of 113 feet.

Table 2.--Lithologic logs of 2 observation wells and 18 monitoring wells

Altitude of land surface: Alt., in feet above sea level. Thickness in feet. Depth in feet below land surface.

cation and material	Thickness	Depth	Location and material	Thickness	Depth
SERVATION WELLS			PS-MW-1s (D-2-4)9bdd-1Conti	nued	
rk Meadows Well			Gravel, with interbedded clay	6	26
1-2-4) 8aaa-1 + 6 51 75 feet			and sand	. 6	36
t. 6,51.75 feet. og by Dave's Drilling			bedded sand, intermittent		
ay	. 10	10	thin layers of cobbles	. 3	39
and and gravel		40	Gravel, with interbedded clay		
ay		50	and sand	. 8	47
nd and gravel		60			•
ay		70			
nd and gravel	. 10	80	PS-MW-1d (D-2-4)9bdd-2		
bbles		90	Alt. 6,791.06 feet.		
ale, reddish	. 40	130	Lithology similar to PS-MW-1s		
ale, reddish, mixed with			for first 45 feet.		
imestone, gray	. 50	180	Clay, moderate brown,		
mestone, gray, mixed with			interbedded sand, fine to		
nale, reddish	. 40	220	coarse, minor amount of		
mestone, gray		300	gravel, high plasticity	. 5	50
known	. 20	320	Clay, as above but low to		
		•	medium plasticity	. 1	51
			Sand, fine to coarse, with	_	
cific Bridge Well			clay and gravel		54
-2-4)9aac-1			Cobbles, with clay and sand	1	55
t. 6,758.53 feet.			Sand, fine to coarse, with		
g by Larry W. Dalton	_	_	interbedded clay and some	_	
nd and gravel		5	gravel	. 7	62
nd		9	Clay, moderate brown, with		
ay and gravel		66	interbedded sand and numerous		
avel, loose, some water		70	cobbles	. 7	69
ay and gravel	. 95	165	Clay, moderate brown, with		
ay, fine gravel, and	10	175	interbedded sand and some	•	70
uartzite		175	gravel, few cobbles	. 9	78
ay		200	Clay, as above, high	-	00
ay and gravel		210	plasticity	. 5	83
vel, loose, some water		215	Clay, as above, decreasing		
ay and quartzite	~ -	260	plasticity with increasing	•	0.5
ale, red		295	depth	. 2	85
ale, red, some water	. 20	315	Bedrock, silty shale, reddish	۰.	05
ale, red, quartzite and	45	260	brown	. 0.5	85.
ravel	. 45	360			
ne, hard, quartzite and	E	265	55 Mil 9 /D 2 4\0200 2		
nale		365	PS-MW-2 (D-2-4)9acc-2		
ale, red, quartzite		425 432	Alt. 6,758.44 feet.		
ale, red, sulfur odor		432	Fill, silt, sand, gravel,	2 5	2
ale, red, quartzite, gravel.		445 446	light brown	. 2.5	2
drock, very hard	. 1	446	Silty sand, light brown,.5	2	A
			small amount of clay	. 2	4
NITORING WELLS			Sandy clay, dark brown,.5		
-MW-1s (D-2-4)9bdd-1			intermittent gravel, 30	. 2.5	7
	•		percent	. 2.3	,
t. 6,791.87 feet. ll, dark brown, soil mixed			Gravel, cobbles, up to 4		
1. J	. 3	3	sand, moderate brown	. 3.5	10
ith sand and gravel ay, moderate brown, with	. 3	3			10
nterbedded sand and gravel,			Sand, gravel, moderate brown, intermittent cobble layers		14
	. 10	13		. 5.5	17
ntermittent cobbles ay, silty, moderate brown,	• 10	1.5	Clay, moderate brown, silt		
ntermittent layers of gravel			and sand present, intermittent cobble		
nd cobbles	. 5	18	_	. 7.5	21
bbles, with interbedded	. ,	10	layers	. ,.,	£.1
lay and sand	. 1	19	moderate brown, medium		
ay, moderate brown,	• 1	13	plasticity, sand and gravel		
			present, unsorted	. 9.5	31
	-	24	Clay, moderate brown, medium	. 5.5	31
rave1	. 5	24			
nterbedded with sand and ravel	. 5	24	plasticity, fine sand	4	35
ravel	. 5	24		. 4	35

Table 2.--Lithologic logs of 2 observation wells and 18 monitoring wells--Continued

					
ocation and material	Thickness	Depth	Location and material	Thickness	Depth
PS-MW-2 (D-2-4)9acc-2Contin	nued		PS-MW-4 (D-2-4)9adc-1Continu	ied	
ravel, coarse sand, angular		36	Clay, moderate brown, tight		
lay, moderate brown, with fin	ne		in some layers, fine sand,	_	
to medium sand, high plasti-			intermittent cobble layers	8	39
city, intermittent, thin	0.5	44 5	Sand, medium to coarse,		
cobble layers	. 8.5	44.5	poorly sorted, gravel present, interbedded clay	6	45
S-MW-3 (D-2-4)9aab-1					
1t. 6,743.35 feet.		_	PS-MW-5 (D-2-4)10BCB-1		
opsoil	. 1	1	Alt. 6,741.04 feet.		
and, light brown, medium-	2	•	Topsoil, silty sand, moderate	0.5	Λ.Ε
grained, well sorted	. 2	3	brown	0.5	0.5
lay, moderate brown, minor			Sand, light tan, medium-	1	1.5
amount of sand and gravel, low plasticity	. 3	6	grained, well sorted	1	1.5
obbles, with clay and sand,		U	medium-grained, some gravel	2.5	4
moderate brown	. 6	12	Clay, moderate brown, sand,	2.5	•
lay, moderate brown, with	🗸		fine to medium, gravel	0.5	4.5
fine sand, minor amount of			Sand, light tan, medium to		
cobbles	. 3	15	coarse	4.5	9
lay, moderate brown, fine			Sand, moderate brown,		
sand	. 1.5	16.5	interbedded silty clay, some	<u> </u>	
lay, moderate brown, with			cobbles present	3.5	12.5
fine sand, intermittent	^ -	0.0	Clay, moderate brown, some	0.5	
gravel, rounded to angular	. 9.5	26	silt, gravel in upper foot	2.5	15
lay, moderate brown, with			Clay, moderate brown, with		
fine sand, medium to high	. 9	35	minor amount of interbedded		
plasticity, some gravel	. 7	33	coarse sand, intermittent	9.5	24.5
ravel, with clay and fine sand	. 1	36	thin gravel layers	3.0	24.3
Juilu		30	interbedded fine sand,		
			intermittent gravel layers	3.5	28
S-MW-4 (D-2-4)9adc-1			Clay, moderate brown, with		
it. 6,773.42 feet.			fine to medium sand, high		
and, light brown, fine to			plasticity	6	34
coarse, well rounded, minor			· ·		
amount of gravel	0.5	0.5			
lay, dark brown, with minor					
amount of gravel, thin sand			PS-MW-5d (D-2-4)10bcb-2		
layer	. 4	4.5	ATt. 6,741.99 feet.		
ravel, with sandy clay,			No lithologic log of initial		
medium plasticity,			34 feet. Refer to log of	24	24
intermittent thin sand	E E	10	PS-MW-5 maddich brown matrix	. 34	34
layers modium	5.5	10	Clay, reddish-brown, matrix		
lay, red-brown, medium plasticity, with fine to			mixed with fine to coarse sand, angular to subangular	1.5	35.
medium sand, intermittent			No data		44
pebbles	3	13	Clay, gravel, sand, poorly	. 0.5	77
iravel, fine to coarse,			sorted, 60 percent clay,		
angular, minor amount of fine	2		25 percent gravel, and		
sand	. 2	15	15 percent sand, clay		
lay, red-brown, with fine to			reddish-brown, sand medium		
medium sand and intermittent			to coarse, angular to		
quartz pebbles	1	16	subangular		45.
ravel and cobbles, angular			No data	. 8.5	54
to subrounded, with minor		10 5	Clay, silty, with sand and		
amount of fine sand	3.5	19.5	gravel, poorly sorted, large	1 F	
iravel and cobbles, with			rock fragment		55.5
minor amount of clay,	1	20 E	No data	. 8.5	64
moderate brown, fine sand		20.5 23	Clay, reddish-brown, very fine		
AND DE IMINIMAL PARACCONIC	. 4.5	23	silt within matrix, clay tight, intermixed rock		
			CIUNICA INCEINIACU IUCK		
lay, moderate brown, with	1.5	24 5	fragments	1.5	65.1
Clay, moderate brown, with fine sand and gravel		24.5 26	fragments	. 1.5 . 13.5	
Cobbles (minimal recovery) Clay, moderate brown, with fine sand and gravel Cobbles (minimal recovery) Clay, moderate brown, with		24.5 26	fragments No data	1.5 13.5	65.5 79

Table 2.--Lithologic logs of 2 observation wells and 18 monitoring wells--Continued

ocation and material	Thickness	Depth	Location and material	Thickness	Depth
S-MW-5d (D-2-4)10bcb-2Cont	inued		PS-MW-7d (D-2-4)10bba-2Conti		
lay and gravel, clay reddish-brown, intermixed		•	Clay, sandy, brown	3.5	45
with angular to subangular fragments, 0-1 inch,			gravel	1.5 4.5	46.5 51
possible Woodside Shale	. 1.5	80.5	Clay, sand, gravel, unsorted	4.3	55
o data		94	Clay, sand, gravel, poorly		•
lay, silty, reddish-brown,	0.5	04.5	Clay, sand, gravel, poorly		
low plasticity ravel, medium to coarse,	. 0.5	94.5	sorted, angular to subangular,	1 5	56.5
graded toward top of sample			about 10 percent clay	1.5 8.5	65
(may not be representative			Clay, sand, gravel, with some	0.0	00
of aquifer material)	. 1	95.5	cobbles, poorly sorted, with		
			quartzite clasts	1.5	66.5
C MU 6 (D 2 4)10bbc 1			Clay, sand, gravel, poorly	0.5	76
S-MW-6 (D-2-4)10bbc-1 lt. 6,731.48 feet.			sortedClay, sand, gravel, cobbles,	8.5	75
opsoil, moderate to dark			poorly sorted, with silty		
brown	. 1.5	1.5	shale and sandstone fragments,		
and, moderate brown, silt,			clay about 10 percent	1.5	76.5
and gravel, poorly sorted,	11 -	10	Clay, sand, gravel, poorly	0.5	0.5
some cobbles	. 11.5	13	sorted	8.5	85
lay, moderate brown, with interbedded fine sand and			Clay, sand, gravel, cobbles, red-brown to yellow-brown,		
gravel	. 16	29	clay also dark green/brown		
3	- 		and gray, poorly sorted,		
			subangular to subrounded,		
S-MW-7 (D-2-4)10bba-1			sandstone, quartzite, and		
1t. 6,722.46 feet.	0.5	Λ.Ε	rock fragments	1.5	86.5
opsoil, dark brownand, silt, clay, moderate	0.5	0.5	Clay, sand, gravel, poorly sorted	8.5	95
brown, with interbedded			Clay, sand, gravel, interbedded	0.5	33
pebbles	. 5.5	6	and mixed, red-brown, clay		
and and gravel, light tan,			sandy and hard, sand, medium		
unsorted	. 1	7	to coarse, poorly sorted,		. -
andy clay, moderate brown,	•	^	subangular to subrounded	1.5	96.5
interbedded gravel	. 2	9	Clay, sand, gravel, poorly	3.5	100
lay, sandy, moderate brown, numerous interbedded cobbles.	. 7	16	Clay, gray with yellow streaks,	3.3	100
lay, moderate brown,	• •	10	hard, imbedded quartzite and		
interbedded gravel and sand	. 9.5	25.5	sandstone rock fragments,		
-			some brown and black		
C MI 74 /D 0 4\1055- 0			carbonaceous material in	1.5	101
S-MW-7d (D-2-4)10bba-2 Tt. 6,722.59 feet.			Clay cand gravel noonly	1.5	101.5
og by D. Coker.			Clay, sand, gravel, poorly sorted	8.5	110
o lithologic log of initial			Clay, sand, gravel, cobbles,	5.5	110
30 feet. Refer to log of			red-brown, soft clay, sand,		
PS-MW-7 located 5 feet to	A- -		medium to coarse, poorly		
the north	. 25.5	25.5	sorted, quartzite rock	1.6	111
and, very fine to fine,			fragments	1.5	111.9
angular to subangular, some interbedded coarse gravel,			Clay, sand, gravel, poorly sorted	3.5	115
with 10 percent clay matrix	. 1.5	27	Clay, sandy	5	120
and and clay, unsorted	_	35	Clay, brown with yellow and	-	· — •
lay, red-brown to gray,			pink, medium stiffness,		4
soft to hard, with black			silty	1.5	121.5
streaks of carbonaceous			Clay, sandy	8.5 5	130
material, intermittent layers with clay and sand, medium to			Gravel, sand, clay	J	135
coarse, subangular to rounded	•		sorted, subangular to sub-		
unsorted	. 1.5	36.5	rounded, a few rock		
lay, some sand, unsorted	. 3.5	40	fragments (may not be		
and, fine to medium, angular			representative)	1.5	136.5
to subangular, some rock			Gravel, sand, clay	1.5	138
fragments, and gravel increasing in size with depth					
increasing in size with depth	•				
some sandy clay, 5 to 10					

Table 2.--Lithologic logs of 2 observation wells and 18 monitoring wells--Continued

Location and material	Thickness	Depth	Location and material	Thickness	Depth
PS-MW-8 (D-2-4)9aac-3			PS-MW-10 (D-2-4)3dcd-1Conti	nued	
Alt. 6.751.41 feet. Topsoil, dark brown Sand, silty, moderate brown,	. 0.5	0.5	Gravel, fine to coarse, poorly sorted	1.5	11.5
with minor amount of interbedded gravel	. 4	4.5	brown, weathered, parts easily	1.5	13
Clay, dark brown, with interbedded fine sand	. 0.5	5	DC MIL 11 (D. 2.4)2aad 1		
Gravel, cobbles, some sand and silt	. 6.5	11.5	PS-MW-11 (D-2-4)3ccd-1 Alt. 6,711.19 feet.		
Clay, silty, moderate brown, minor amount of interbedded coarse sand, medium			Fill, sand, silt, gravel, dry, loose	2	2
plasticity		14	organic, low to medium	•	•
Gravel Clay, moderate brown, with		15	plasticity	6	8
interbedded sand and gravel		16.5	with some interbedded gravel,	•	10
Gravel, with sand and clay		17 18	medium to high plasticity Sand, moderate brown, fine- to	2	10
Clay, silty, moderate brown Gravel, with sand and clay Sand, silty, moderate brown,		20	medium-grained, some gravel Sand, silty, with some	0.5	10.5
some clay, low plasticity, interbedded gravel Sand, coarse, gravel, minor	. 10	30	gravel, reddish-orange color Clay, dark gray, low	5.5	16
amount of clay and fine sand.	. 10.5	40.5	plasticity		17 20
PS-MW-9 (D-2-4)10bab-1 Alt. 6,707.90 feet.	_		Sand, gravel, with some gray-green clay	1.5	21.5
Topsoil, dark brown		1	DC MIL 114 (D 2 4)2646 1		
Gravel, with sand, coarse Sand, light tan, fine- grained, well sorted,	. 0.5	1.5	PS-MW-11d (D-2-4)3cdc-1 Alt. 6,715.89 feet. Log by K. Moll and D. Coker.		
mineralized Clay, moderate brown, with interbedded sand, fine to	. 0.5	2	Soil, clayey, silty		1.5 4
medium Sand, light tan, fine-	. 0.5	2.5	layer of decomposed straw Gravel, with very fine sand	. 4	6 10
grained, well sorted, highly mineralized	. 1.5	4	Gravel, coarse, with very fine sand and silt, poorly sorted, rounded to subrounded, quartz		
material present, low plasticity	. 2.5	6.5	feldspar, and shale rock chips	. 1.5	11.5
Gravel, cobbles, with interbedded sandy clay	. 3	9.5	Silt, dark brown, with gravel and very fine to fine sand	. 3.5	15
Gravel, interbedded sandy clay	. 2.5	12	Clay, dark gray, sticky, very plastic, and gravel, coarse, angular to subrounded, poorly		16.6
interbedded fine sand and some gravel, high plasticity.	. 3	15	Clay, gravel, poorly sorted	. 2	16.5 18.5
Clay, reddish brown, with fine sand and angular rock	2 =	15.5	Clay, stiffClay, dark gray, no plasticity	•	20
fragments Bedrock, angular fragments,	. 0.5	15.5	very stiff	. 5.5	21.5 27
red silty shale, friable	. 1	16.5	Sand, fine to coarse, sorted Sand, light brown, very fine to coarse, subangular to		30
PS-MW-10 (D-2-4)3dcd-1 Alt. 6,680 feet. Sand, fine to coarse, some			subrounded, well sorted Sand, coarse, with gravel Gravel, coarse	. 7.5	31.5 39 40
gravelSoil, dark brown, organic	. 1	1	Gravel, very coarse to cobbles angular to rounded, sorted	•	41.5
material		1.5	Gravel, coarse	. 5.5	47 50
silty sand lenses and gravel. Gravel, fine to coarse,		5	Clay, light brown, silty, tight		51.5
poorly sorted	. 1	6	Clay, silty		55
lenses and gravel	. 4	10	and quartz pebbles		56.5

Table 2.--Lithologic logs of 2 observation wells and 18 monitoring wells--Continued

	Thá alus s s			TL ! . !	
Location and material	Thickness ————	Depth ———	Location and material	Thickness	Depth
S-MW-11d (D-2-4)3cdc-1Contin			PS-MW-13 (D-2-4)4dcb-1		
and, with gravel	8.5	65	Alt. 6,728.42 feet.		
lay, red-brown, tight, with	1.5		Clay, silty, red-brown, with	_	_
coarse gravel	1.5	66.5	gravel	5	5
lay, with gravel	1.5	68	Clay, medium brown, moist	7	12
and, light brown, silty, small	-		Clay and gravel, unsorted,		
amount of clay	7	75	with cobbles 2-3 inches in	_	
Sand, light brown, fine to		~~ -	length, subangular	8	20
medium	1.5	76.5	Clay, light brown, silty, low		
and, silty	3.5	80	to medium plasticity, and		
and, light brown, well sorted,			sand, fine to very fine,		
grades from fine at top to			iron staining present	1.5	21.5
coarse at bottom split-spoon			Clay with some cobbles		
barrel (may be settling of			1-2 inches in length, poorly		
material inside drill pipe)	1.5	81.5	sorted, subangular to	_	
Sand, fine to coarse	3.5	85	subrounded	7.5	29
			Clay, sand, gravel, poorly		
			sorted	3	32
S-MW-12 (D-2-4)9acc-1			Gravel, coarse to very coarse,		
11. 6,797.70 feet.			subangular, with 30 percent	_	
Gravel, with silt and sand,	_	_	sand and 10 percent clay	8	40
moderate brown	2	2	Clay, medium brown, tight,		
iravel, coarse, alternating			with very fine sand and		
with layers of sand and			interbedded subangular gravel,		
gravel	13	15	iron staining present	1.5	41.5
iravel, cobbles, alternating			Clay, sand, gravel, unsorted,	c = =	
with layers of interbeded	4.5		gravel increasing with depth	12.5	54
clay, sand and gravel	10	25	Sand, gravel	1	55
lay, fine sand, moderate			Limestone, light gray to white,		
brown, some interbedded	_		massive, with weathered shale		
gravel	3	28	fragments	6	61
obbles	1	29	Gravel, coarse, with clay and		
lay, fine sand, moderate			sand, limestone rock		
brown, some interbedded			fragments	1.5	62.5
gravel	23	52	Gravel, with clay and sand	6.5	69
Gravel, some sandy clay	2	54	Shale, purple, and limestone	6	75
lay, sandy, moderate brown,					
with some interbedded gravel,					
medium plasticity	9.5	63.5	PS-MW-14 (D-2-4)4dcc-2		
lay, sand, fine to coarse,			Alt. 6,712.44 feet.		
moderate brown, some gravel,			Loam, dark brown	3	3
high plasticity	2.5	66	Gravel, with silt and sandy		
obbles, sandy clay, moderate			loam	4	7
brown	1	67	Gravel	6	13
lay, moderate brown, with		-	Gravel, with cobbles	ğ	22
interbedded sand and gravel,			Clay, with 20-30 percent		
low plasticity	12	79	gravel	4	26
lay, moderate brown, with			Clay and gravel, unsorted,		
interbedded sand and gravel,			light brown, subangular		
high plasticity	6	85	clasts	11	37
obbles, with interbedded	-		Gravel, sand, poorly sorted,		
clay, sand, and gravel,			quartz and siltsone rock		
dense, moist	12	97	fragments (split-spoon sample		
iravel, sand, fine to coarse,	- -	- •	taken at 37 feet with no		
some cobbles, intermittent			recovery)	12	49
thin sandy clay layers	17	114	Clay, medium brown, with coarse		
iravel, sand, fine to coarse,		'	sand	11	60
igneous and quartzite				••	-
boulders	6	120			
Bedrock, silty shale,	•				
reddish-brown, friable	5	125			
. agg. on oroning in indicessions	•	1.5			

Table 3.—Water levels in 3 observation wells and 18 monitoring wells

Descriptions of measuring points for each well are in the files of the U.S. Geological Survey

Water levels in feet above (+) or below land surface datum.

OBSERVATION WELLS

Park Meadows well

(D- 2- 4) 8AAA- 1

Records available 1979 to current year (1988)

Date	Water level	Date	Water level	Date	Water level	Date	Water level
JUL 26, 1983	29.23	APR 26, 1984	30.35	FEB 11, 1988	31.46	FEB 18, 1988	45.92
SEPT 30	29.52	MAY 25	30.62	12	31.42	19	37.34
NOV 02	29.67	JUNE 20	28.66	13	31.43	20	35.48
DEC 21	31.03	MAR 23, 1987	32.86	14	31.38	21	34.52
JAN 20, 1984	31.71	SEPT 29	35.35	15	31.34	23	33.23
FEB 27	31.88	FEB 08, 1988	32.23	16	31.32	MAR 01	31.18
MAR 28	31.08	10	31.63	17	43.36	31	31.32

Pacific Bridge well

(D- 2- 4) 9AAC- 1

Records available 1948 to current year (1988)

Date	Water level	Date	Water level	Date	Water level	Date	Water level
JUL 26, 1983 SEPT 30	8.30 10.16	FEB 09, 1987	25.25 25.25	MAR 23, 1987 SEPT 29	14.76 15.29	FEB 17, 1988 18	25.01 25.00
NOV 02	13.54	11	25.23	DEC 09	22.45	19	25.06
DEC 21	17.23	12	25.08	JAN 08, 1988	24.51	20	25.05
JAN 20, 1984	16.86	13	25.00	FEB 08	25.24	21	24.99
FEB 27	15.03	14	25.00	09	25.25	24	17.81
MAR 28	1.80	15	24.93	10	<i>2</i> 5.25	MAR 24	17.81
apr 26	+5.75	16	24.95	11	25.24	31	15.27
MAY 25	+0.82	17	25.01	12	25.08	APR 05	14.18
June 22	+0.08	18	25.00	13	25.00	11	12.82
DEC 09, 1986	22.45	19	25.06	14	25.00	26	11.61
JAN 08, 1987	24.51	20	25.05	15	24.93	MAY 04	11.44
FEB 08	25.24	FEB 21, 1987	24 .99	16	24.95		

Cartier well

(D- 2- 4) 4DCC- 1

Records available 1970 to current year (1988)

Date	Water level	Date	Water level	Date	Water level	Date	Water level
MAR 26, 1987 APR 02 09	31.15 30.24 28.96	NOV 24, 1987 JAN 12, 1988 FEB 08	29.43 31.06 31.05	FEB 13, 1988 14 15	30.78 30.80 30.74	MAR 01, 1988 16 24	30.42 30.32 29.83
16 24 MAY 07 OCT 14	29.10 29.30 27.56 18.06	09 10 11 FEB 12, 1988	30.97 30.90 30.87 30.80	16 17 18 22	30.71 31.22 32.70 32.78	31 APR 26 MAY 04	29.58 25.33 19.03

Table 3.—Water levels in 3 observation wells and 18 monitoring wells—Continued

MONITORING WELLS

P5-M⊌-1s	(1	D- 2- 4) 9BOO- 1					
Date	Water level	Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 31 SEPT 25 OCT 14 NOV 24 30 JAN 07, 1988 FEB 06	27.71 26.85 28.87 29.67 30.28 30.45 32.35 30.76	FEB 08, 1988 09 10 11 12 13 14	30.71 30.61 30.50 30.45 30.11 30.00 29.81	FEB 15, 1988 16 17 18 19 20 21	29.71 29.71 29.67 29.64 29.70 29.68 29.65	MAR 24, 1988 31 APR 05 07 11 14 MAY 04	23.16 23.20 23.41 23.44 23.62 23.73 24.16
PS-MW-1d	(1	D- 2- 4) 98 00 - 2					
Date	Water level	Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 08 31 SEPT 09 25 0CT 14 NOV 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	34.98 34.55 33.25 33.87 35.22 35.86 37.39 37.42 37.47 37.51 37.53 37.57 37.58 37.71 37.65 37.46 37.34 37.36 37.34 37.32 37.32 37.32 37.32 37.32	DEC 01, 1987 02 03 04 05 06 07 08 09 10 11 12 13 14 15 26 27 28 29 30 31 JAN 01, 1988 02 03 04 05 JAN 06, 1988	37.54 37.58 37.58 37.75 37.75 37.84 37.96 37.98 37.72 37.55 37.55 37.59 37.52 37.59 37.52 37.13 37.44 37.69 37.87 37.95 38.16 38.29 38.36 38.45 38.56 38.56	JAN 07, 1988 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 FEB 01 02	38.68 38.70 38.76 38.82 38.79 38.89 38.96 39.01 38.98 39.05 39.10 39.17 39.19 39.12 39.12 39.12 39.12 39.33 39.55 39.05	FEB 03, 1988 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MAR 01 16 24 31 APR 05 07 11 14 MAY 04	37.91 37.52 37.43 37.21 36.99 36.80 36.80 36.85 36.84 36.66 36.54 36.34 36.60 35.82 33.25 29.22 28.76 28.45 28.65 29.03 29.16
PS-MW-2	(1	D- 2- 4) 9AAC- 2					
Date	Water level	Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 SEPT 01 OCT 14 NOV 24 30 DEC 09 JAN 08, 1988	30.39 29.97 31.65 33.34 33.72 34.15 35.15	FEB 06, 1988 08 09 10 11 12 13	35.09 35.08 35.06 35.05 34.97 34.81 34.76	FEB 14, 1988 15 16 17 18 19 20	34.66 34.65 34.65 34.72 34.75 34.79 34.83	FEB 21, 1988 24 MAR 05 11 13 26 31	34.83 34.52 29.49 29.24 29.13 28.61 29.73

Table 3.—Water levels in 3 observation wells and 18 monitoring wells—Continued

PS-MW-3		(D- 2- 4)) 9AAB - 1					
Date .	Water level		Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 SEPT 03 OCT 14 NOV 24 DEC 01 JAN 12, 1988	22.34 22.45 23.35 24.13 24.40 25.47		FEB 06, 1988 08 09 10 11 12	25.53 25.53 25.54 25.54 25.52 25.49	FEB 14, 1988 15 16 17 18 19	25.43 25.40 25.39 25.38 25.38 25.41	FEB 20, 1988 21 24 MAR 31 APR 12 MAY 04	25.45 25.46 25.40 22.68 22.49 21.87
PS-MW-4		(D- 2-4)	9ADC- 1					
Date	Water level		Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 SEPT 01 OCT 14 NOV 24 DEC 01 JAN 07, 1988 FEB 08	28.64 28.59 31.69 32.30 32.84 33.14 33.26 33.27		FEB 10, 1988 11 12 13 14 15 16	33.24 33.18 32.97 32.85 33.25 33.48 33.48	FEB 17, 1988 18 19 20 21 24 MAR 16	33.63 33.72 33.85 33.94 33.94 33.30 22.04	MAR 24, 1988 29 31 APR 05 11 12 MAY 03	22.09 21.22 21.32 22.10 22.40 22.49 24.58
PS-MW-5		(D- 2- 4))108CB- 1					
Date	Water level		Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 SEPT 01 OCT 14 NOV 24 DEC 01 JAN 07, 1988 FEB 06	15.96 16.38 19.70 19.29 19.93 21.47 22.18		FEB 09, 1988 10 11 12 13 14 FEB 15, 1988	22.22 22.24 22.25 22.25 22.25 22.28 22.25 22.25	FEB 16, 1988 17 18 19 20 25 MAR 16	22.25 22.25 22.20 22.23 22.31 22.14 16.59	MAR 24, 1988 31 APR 05 11 12 MAY 04	15.45 14.25 14.15 13.81 13.79 13.72
PS-MW-5d		(D- 2- 4))10BCB- 2					
Date	Water level		Date	Water level	Date	Water level	Date	Water level
FEB 25, 1988 MAR 16	33.02 30.56		MAR 24, 1988 31	29.71 28.97	APR 05, 1988	28.65 28.40	APR 12, 1988 MAY 05	28.34 28.09

Table 3.—Water levels in 3 observation wells and 18 monitoring wells—Continued

PS-MW-6		(D- 2-	4)10BBC- 1					
Date .	Water level		Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 SEPT 02 OCT 14 NOV 24 DEC 01 JAN 08, 1988	13.31 13.44 14.71 15.09 15.26 16.08		FEB 08, 1988 09 10 11 12 13	16.45 16.45 16.46 16.46 16.47 16.48	FEB 14, 1988 15 16 17 18 19	16.47 16.47 16.45 16.45 16.45	FEB 20, 1988 21 24 MAR 31 APR 12 MAY 04	16.45 16.45 16.40 13.78 12.96 12.31
PS-MH-7		(0- 2-	4)10BBA- 1					
Date	Water level		Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 SEPT 02 OCT 14 NOV 24 DEC 01 JAN 07, 1988 FEB 08 09	10.69 10.77 10.89 10.93 10.97 11.12 11.20		FEB 10, 1988 11 12 13 14 15 16	11.20 11.19 11.18 11.19 11.17 11.19 11.19	FEB 17, 1988 18 19 20 21 25 MAR 16	11.19 11.20 11.18 11.19 11.18 11.19 11.07	MAR 24, 1988 29 31 APR 05 11 12 MAY 03	11.01 10.94 10.93 10.89 10.88 10.88
PS-MW-7d		(D- 2-	4)10BBA- 2					
Date	Water level		Date	Water level	Date	Water level	Date	Water level
FEB 16, 1988 17 18 19	15.63 15.63 15.66 15.73		FEB 20, 1988 21 25 MAR 16	15.75 15.72 15.54 14.99	MAR 24, 1988 29 31 APR 05	14.68 14.50 14.67 14.42	APR 11, 1988 12 MAY 05	14.28 14.25 13.67
PS-MW-8		(D- 2-	4) 9AAC- 3					
Date	Water level		Date	Water level	Date	Water level	Date	Water level
AUG 07, 1987 SEPT 01 OCT 14 NOV 24 DEC 01 JAN 08, 1988	25.32 25.31 27.45 28.33 28.63 29.90		FEB 09, 1988 10 11 12 13 FEB 14, 1988	30.02 30.00 29.98 29.97 29.97 29.93	FEB 15, 1988 16 17 18 19 20	29.93 29.92 29.91 29.91 29.91 29.92	FEB 21, 1988 24 MAR 31 APR 12 MAY 03	29.93 29.93 22.95 22.14 22.49

Table 3.—Water levels in 3 observation wells and 18 monitoring wells—Continued

	PS-MW-9		(D- 2-	4)10BAB- 1					
Da	ate .	Water level		Date	Water level	Date	Water level	Date	Water level
SEPT 02 OCT 14 NOV 24 DEC 02	4 4 2 8 , 1988	6.33 6.19 5.50 6.51 6.86 7.29 6.95		FEB 09, 1988 10 11 12 13 14 15	6.98 6.93 6.80 6.74 6.65 6.79 6.68	FEB 16, 1988 17 18 19 20 21	6.75 6.82 6.93 7.03 7.03 6.78	FEB 25, MAR 31 APR 05 13 15 MAY 04	1988 6.22 5.71 5.88 5.67 5.58 5.20
	PS-MN-10		(D- 2-	4) 30CD- 1					
Da	ate	Water level		Date	Water level	Date	Water level	Date	Water level
AUG 0: SEPT 0: NOV 24		1.71 1.81 1.35		DEC 02, 1987 JAN 08, 1988	1.50 1.65	FEB 26, 1988 APR 12	1.15 1.01	APR 14, MAY 04	1988 1.00 0.31
	PS-MW-11		(D- 2-	4) 3CCD- 1					
D	ate	Water level		Date	Water level	Date	Water level	Date	Water level
OCT 1- NOV 2- DEC 03	4 2 2, 1988	2.12 2.18 2.44 2.53 2.70 2.53		FEB 08, 1988 09 10 11 12 14	2.53 2.53 2.52 2.50 2.47 2.47	FEB 15, 1988 16 17 18 19 20	2.42 2.42 2.45 2.44 2.53 2.55	FEB 21, 26 APR 05 12 14 MAY 03	1988 2.50 2.44 1.79 1.72 1.72 1.50
	PS-MW-110	1	(D- 2-	4) 3CDC- 1					
D.	ate	Water level		Date	Water level	Date	Water level	Date	Water level
10	1 2, 1988	9.59 9.57 9.53 9.49 9.52		FEB 15, 1988 16 17 18	9.52 9.50 9.54 9.64	FEB 19, 1988 FEB 20, 1988 21 26	9.77 9.75 9.70 9.46	APR 05 12 14 MAY 03	9.08 8.99 8.97 8.32
	PS-MW-12		(D- 2-	4) 9ACC- 1					
D	ate	Water level		Date	Water level	Date	Water level	Date	Water level
OCT 14 NOV 24	4 0 7, 1988 6	38.95 41.11 42.27 42.52 43.80 42.50 42.45		FEB 09, 1988 10 11 12 13 14 15	42.41 42.32 42.20 41.90 41.80 41.71	FEB 16, 1988 17 18 19 20 21 23	41.67 41.62 41.57 41.67 41.66 41.56 41.40	MAR 16, 24 31 APR 05 11 14 MAY 03	1988 35.58 35.23 34.70 34.88 35.15 35.28 36.17

Table 3.—Water levels in 3 observation wells and 18 monitoring wells—Continued

PS-MW-13

(D- 2- 4) 4DCB-1

Water Water te level Date level Dat	Water te level
, 1988 8.62 APR 07, 1988 7.41 APR 24, 8.39 08 7.45 25	, 1988 7.09 7.53
8.19 09 7.45 26	7.77
8.04 10 7.43 27	7.86
7.90 11 7.40 28	8.18
7.82 12 7.39 29	8.40
7.72 13 7.37 30	8.32
7.53 14 7.39 MAY 01	8.30
7.42 15 7.44 02	8.22
7.57 16 7.36 03	8.63
7.77 17 7.38 04	8.78
7.59 18 7.37 05	8.74
7.51 19 7.21 06	8.78
7.47 20 7.13 07	9.16
7.48 21 7.06 08	9.10
7.51 22 7.05 09 7.44 23 7.09 JUNE 06	9.13
7.44 23 7.09 JUNE 06	11.98

PS-MW-14

(D- 2- 4) 4DCC-2

							
Date	Water level	Date	Water level	Date	Water level	Date	Water level
FEB 09, 1988	27.69	MAR 10, 1988	26.83	APR 09, 1988	25.73	MAY 08, 1988	19.84
10	27.65	11	26.84	10	25.67	09	19.84
11	27.64 27.59	12	26.87	11	25.62	10	20.01
12	27.59	13	26.90	12	25.58	11	20.55
13 14	27.57	14	26.90	13	25.53	12 13	19.92
14	27.58	15	26.89	14	25.50	13	18.97
15 16	27.55	16	27.07	15 16	25.63	14 15	17.78
16	27.56	17	26.99	16	25.39	15	17.52
17	27.9 0	18	26.92	17	<i>2</i> 5.35	16 17	18.14
18	28.55	19	26.83	18	24.89	17	18.16
19	28.9 7	20	26.79	19	22.39	18	17.70
20 21 22	28.97	21	26.76	20	20.97	19 20	17.81
21	<i>2</i> 8.78	22	26.70	21	19.13	20	18.12
22	<i>2</i> 8.59	23	26.64	22	19.12	<i>2</i> 1	17 .8 0
23	28.4 5	24	26.58	23	19.6 0	22	18.15
24 25 26	28.28	24 25	26.71	24	20.03	22 23	18.29
25	28.13	26 27	26.43	<i>2</i> 5	20.23	24 25	17.67
26	27 .9 8	27	26.31	26	20.47	25	17.90
27	27.84	28	26.21	27	20.44	26	18.28
28	27.56	29	26.10	19 20 21 22 23 24 25 26 27 28 29 30	19.96	26 27	18.68
29	27.29	30	26.14	29	19.43	28	19.48
MAR 01	27.24	30 31	26.17	30	19.02	28 29	19.48 19.36
02	27.11	APR 01	26.09	MAY 01	18.70	30 31	18.53
03	27.03	02	26.04	02	18.62	31	18.62
04	26.93	03	25.98	03	18.33	JUNE 01	18.26
05	26.85	04	25.96	04	18.99	02	18.23
06	26.84	05	25.93	05	19.21	03	18.50
07	26.86	06	25.85	05 06	19.89	04	18.75
08	26.88	07	25.78	07	20.15	05	19.00
09	26.84	Ŏ 8	25.77	•		*-	

3

Table 4.—Estimated values of hydraulic conductivity (in feet per day)

Location	Hydraulic Conductivity	Method
PS-MW-ls	1	Bouwer and Rice
PS-MW-ld	11	Cooper, Bredehoeft, and Papadopulos
PS-MW-2	7	Bouwer and Rice
PS-MW-3	9	Bouwer and Rice
PS-MW-4	3	Bouwer and Rice
PS-MW-5	2	Bouwer and Rice
PS-MW-5d	¹1	Cooper, Bredehoeft, and Papadopulos
PS-MW-6	¹10	Bouwer and Rice
PS-MW-7	14	Bouwer and Rice
PS-MW-7d	2	Cooper, Bredehoeft, and Papadopulos
PS-MW-8	¹1	Bouwer and Rice
PS-MW-9	110	Bouwer and Rice
PS-MW-10	4	Bouwer and Rice
PS-MW-11	6	Bouwer and Rice
PS-MW-11d	110	Bouwer and Rice
PS-MW-12	2	Bouwer and Rice

 $^{^{1}\}mbox{\sc Values}$ rounded to nearest order of magnitude.

Table 5.—Field parameters at surface-water sites [°C, degrees Celsius; μ S/cm, microsiemens per centimeter at 25° Celsius; ft, feet; s, second; mg/L, milligrams per liter]

Location .	Date	Temper- ature, field (°C)	Specific conductance, field (µS/cm)	Instan- taneous discharge (ft³/s)	pH, field (units)	Alkalinity, field (mg/L as CaCO ₃)	Bicarbonate (mg/L)	Carbonate (mg/L)
Silver Creek at Bonanza Drive	04-29-87 07-09-87 04-13-88	18.5 19.0 15.5	990 925 1,190	0.76 0.04 1.99	8.6 8.6 8.5	102 84 107	120 104 1131	12 0 10
Silver Creek at Wyatt Earp Drive	04- <i>2</i> 9-87 07-09-87 04-13-88	18.0 19.5 15.5	1,080 1,570 1,200	0.65 0.002 1.45	8.6 8.0 8.5	100 123 1109	120 150 153	8 0 10
Silver Creek below Prospector Square	04-29-87 07-09-87 04-13-88	11.0 13.5 13.0	990 1,450 1,010	2.18 0.24 4.31	7.5 7.4 7.8	151 105 1152	180 128 1185	0 0
Pace-Homer Ditch at Park Meadows Collection box	04-29-87 07-09-87 04-13-88	15.5 19.5 10.0	720 825 695	0.08 2.03 0.893	8.0 8.2 8.0	174 116 1186	210 142 1227	0 0 10
Pace-Homer Ditch below Prospector Square	04-29-87 07-09-87 04-13-88	13.0 18.0 9.0	830 870 775	1.33 2.50 2.44	7.9 8.2 7.6	184 134 185	220 164 1225	0 0

^{&#}x27;Values determined by State lab.

collected from surface-water sites EPA, U.S. Environmental Protection Agency; dashes indicate no data; <, less than]

Barium, dis- solved (µg/L as Ba)	Beryl- ium, dis- solved. (µg/L as Be)	Cad- mium, dis- solved (µg/L as Cd)	Chro- mium, dis- solved (µg/L as Cr)	Cobalt, dis- solved (ug/L as Co)	Copper, dis- solved (µg/L as Cu)	Iron, dis- solved (µg/L as Fe)	Lead, dis- solved (µg/L as Pb)	Manga- nese, dis- solved (µg/L as Mn)	Mercury, dis- solved (µg/L as Hg)	Nickel, dis- solved (µg/L as Ni)	Silver, dis- solved (µg/L as Ag)	Zinc, dis- solved (µg/L as Zn)
83	<0.5	1	<10	<3	10	8	<10	130	<0.1	<10	<1	68
74	<1	1	<5	<20	<20	40	10	120	<0.25	<10	<2	59
<70	<3	<4	<10	<20	30	<60	7	122	<0.4	<24		62
61	<0.5	1	<10	<3	10	15	<10	12	<0.1	<10	<1	28
51		1	<5			<20	10	11			<10	30
49	<1	<4	<4	<9	6.1	29	<5	18	<0.2	<8	<4	38
94	<0.5	4	<5	<3	10	6	<10	290		<10	<1	140
81	<1	<1	<5	<20	<20	20	<5	270	<0.2	<10	<2	150
84	<0.5	2	<10	<3	<10	4	<10	280	<0.1		<1	80
75	<1	2	<5	<20	<20	<20	10	260	0.2	<10	<2	70
80	<3	<4	<10	<30	23	<60	9	259	<0.2	<24		68
73 62 60	<0.5 <1	13 17 17	<10 <5 <4	<3 <9	<10 10	4 <20 27	<10 <5 <5	2,910 2,900 2,970	0.1 <0.2	 8.5	<1 <10 <4	3,400 3,300 3,500
88	<0.5	2	<5	<3	<10	5	<10	240		<10	<1	160
74	<1	<1	<5	<20	<20	20	<5	220	<0.2	<10	<2	170
41 <70	<1 <3	4 <4	<5 <10	<20 <30	<20 16	<20 <60	10 8	360 353	0.25 <0.2	<10 <24	<2 <10	590 559
49	<u></u>	7	<5		-	81		970			<10	2,300
46	<1	6	<4	<4	-6	80	6.2	980	<0.2	<8	<4	2,380
49	<0.5	2	<5	<3	<10	15	<10	180		<10	1	280
39	<1	<1	<5	<20	<20	20	<5	170	<0.2	<10	<2	270
50	<1	<1	<5	<20	<20	320	<5	170	0.2	<10	<2	33
<70	<3	<4	<10	<30	<11	<60	<5	158	<0.2	<24		32
22		<1	<5			<20	<5	57			<10	<15
22	<1	<4	<4	9	28	<24	<5	60	<0.2	48	<4	16
64	<0.5	2	<5	<3	<10	22	<10	310		<10	<1	4
52	<1	<1	<5	<20	<20	21	<5	290	<0.2	<10	<2	29
23	<1	<1	<5	<20	<20	580	5	75	0.25	<10	<2	52
<70	<3	<4	<10	<30	13	110	27	72	<0.2	<24	<10	63
30	<u></u>	<1	<5			<20	<5	11			<10	26
28	<1	<4	<4	< 9	11	<24	14	23	<0.2	4 8	<4	23
44	<0.5	<1	<5	<3	<10	16	<10	110		<10	<1	47
36	<1	<1	<5	<20	<20	20	<5	110	⊲0.2	<10	<2	62

Table 6.—Chemical analyses of filtered water [USGS, U.S. Geological Survey; State, Utah Department of Health; mg/L, milligrams per liter; μ g/L, micrograms per liter;

Location Date Report Silm, Solim, Silm, Solim, Silm, Solimed Solived Soliv											
Bonanza Drive 04-29-87 State 76 15 96 3 173 110 < 04	Location .	of	ing-	cium, dis- solved (mg/L	sium, dis- solved (mg/L	dis- solved (mg/L	sium, dis- solved (mg/L	ride, dis- solved (mg/L	fate, dis- solved (mg/L	Alum- inum, dis- solved (µg/L as Al)	Arsenic, dis- solved (µg/L as As)
O7-09-87 State		04-29-87	State	76	15	96	3	173	110	<200 <140	5 5.5 <10
Silver Creek at Wyatt Earp Drive 04-29-87 State 83 17 110 2.9 220 150 140 120 150 150 150 150 150 150 150 150 150 15		07-09-87	State							 32	6 7 <10
Wyatt Earp Drive 04-29-87 State 83 17 100 3 174 120 <200		04-13-88	State				3.1	260 267.4	92 82	 	3 2.5
O7-09-87 State		04-29-87	State	83	17	100	3	174	120	<200 <140	5 4.5 <10
Silver Creek below Prospector Square 04-29-87 State Prospector Square 04-29-87 State Prospector Square 04-29-87 State Prospector Square 04-29-87 State Prospector Square 07-09-87 State Prospector Square 07-09-87 State Prospector Square 04-13-88 State Prospector Square 04-29-87 State Prospector Square Prospector Square Prospector Square Prospector Square Prospector Squ	·	07-09-87	State						_	 17	2 3.2 <10
Prospector Square 04-29-87 State 120 27 44 2 98 210 <20 EPA 123 27.2 46.7 2.4 <144 USGS 07-09-87 State		04-13-88	State				3.3				3 1.5
07-09-87		04-29-87	State	120 123	27 27.2	44 46.7	2 2.4		210	<200 <140	5.5 <10
Pace-Homer Ditch at Park Meadows Collection box O4-29-87 USGS O7-09-87 USGS O7-09-87 USGS O4-13-88 USGS O7-09-87 USGS O4-13-88 USGS O4-29-87 USGS O4-29-87 USGS O4-29-87 USGS D4-13-88 USG		07-09-87	State		 34.4	48	 3.8	 	-	 26	9.5 <10
Park Meadows		04-13-88	State	-			2.9	140 147.5			6 5.5
07-09-87	Park Meadows	04-29-87	State		31 29.8	17 17.3	2 1.8		180	<200 <140	12.5 <10
04-13-88 State 29.9 140 Pace-Homer Ditch below USGS Prospector Square 04-29-87 State 100 31 22 2 15.5 170 <200 EPA 107 30.5 23.3 1.7 <140		07-09-87	State	120	 36.3	8.8	1.8			 16	18.5 17
Prospector Square 04-29-87 State 100 31 22 2 15.5 170 <200 EPA 107 30.5 23.3 1.7 <140		04-13-88	State					28 29.9	150 140	 	8 5.5
27211		04-29-87	State	100 107	31 30.5	22 23.3	2 1.7			<200 <140	5.5 <10
07-09-87		07-09-87			- <u>-</u> 33.8	 16.8	 1.9			 20	12.5 11
		04-13-88	State						180 170		5 2.5

Table 7.-Chemical analyses from unfiltered [USGS, U.S. Geological Survey; State, Utah Department of Health; $\mu g/L$, micrograms per liter;

LOCATION	Date of sample	Report- ing- agency	Cal- cium, total (mg/L as Ca)	Magne- sium, total (mg/L as Mg)	Sodium, total (mg/L as Na)	Potas- sium, total (mg/L as K)	Alum- inum, total (µg/L as Al)	Arsenic, E total (µg/L as As)	Barium, total (µg/L as Ba)
Silver Creek at Bonanza Drive	04-29-87	USGS State EPA	72 77 76.9	17 16 15.7	90 97 97	2.8 3 3.2	580 1,360	17 18 27	100 91 80
	07-09-87	USGS State EPA	71 78.9	16 17.2	62 76.4	2.7 - 3	 60	6 7 <10	<100 51 51
	04-13-88	USGS State EPA	79 97.3	16 22.4	130 54.6	3 1.9	<400 <100	2 5.2	73 34
Silver Creek at Wyatt Earp Drive	04-29-87	USGS State EPA	74 78 78.2	17 16 15.7	91 563	2.7 3 3.3	500 1,370	18 14 17	100 80 <70
	07-09-87	USGS State EPA	170 238	50 - 63.1	29 40.6	3.6 42	3.5 17	2 62 <10	<100 60
	04-13-88	USES State EPA	81 69.8	17 14.2	130 110	3 1.9	450 <100	5.5 28	84 66
Silver Creek below Prospector Square	04-29-87	USGS State EPA	120 120	27 26.6	45 47	3 2.4	<200 420	10 12	44 <70
	07-09-87	USGS State EPA	 225	 34.7	 49.4	 4	198	16 12	47 46
	04-13-88	USGS State EPA	110 71.1	26 14.4	66 112	3 1.6	<400 <100	3.5 <2	36
Pace-Homer Ditch at Park Meadows Collection box	04-29-87	USGS State EPA	91 95.7	31 31.1	17 17.5	2 1.9	<200 <140	10.5 10	51 <70
	07-09-87	USGS State EPA	118	 35.4	 9.4	 1.9	71	19 18	23 11
	04-13-88	USGS State EPA	86 77 . 2	27 24.9	20 17.5	3 1.5	<400 <100	5.5 5.4	55 46
Pace-Homer Ditch below Prospector Square	04-29-87	USGS State EPA	100 105	30 29.8	22 22.8	2 1.7	<200 <140	7.5 <10	25 <70
	07-09-87	USGS State EPA	120	_ 33.2	 16.1	1.8	-	13 12	31 30
	04-13-88	USGS State EPA	100 91.5	28 25.6	22 19.4	2 1.2	<400 <100	3.5 5.2	39 31

water collected at surface-water sites EPA, U.S. Environmental Protection Agency; mg/L, milligrams per liter; dashes indicate no data; <. less than}

Beryl- ium, total (µg/L as Be)	Cad- mium, total (µg/L . as Ca)	Chro- mium, total (µg/L as Cr)	Cobalt, total (µg/L as Co)	Copper, total (ug/L as Cu)	Cyan- ide, total (µg/L as Cn)	Iron, total (µg/L as Fe)	Lead, total (µg/L as Pb)	Manga- nese, total (µg/L as Mn)	Mercury, total (µg/L as Hg)	Nickel, total (µg/L as Ni)	Silver, total (µg/L as Ag)	Zinc, total (µg/L as Zn)
	8	<10		44	<10	1,900	700	290	0.3		1	960
<1	5	<5	<20	38.0	<20	1,600	700	290	0.75	<10	<2	870
<3	<4	<10	<30	54	<10	2,350	580	309	⊲0.2	<24	<10	525
 <1	<1 <1 <4	<10 <5 <4	 <9	8 <20 11	<10 <10	150 110 192	21 10 42	20 13 28	0.1 ⊲0.2 ⊲0.2	 -8	2 √ 0.2 √ 4	50 57 77
<1	<1	5	<20	<20	<20	<20	<5	<5	◆0.2	<10	⊘	65
<2	<1.1		<6	22	19	111	14	165	◆0.2	<11	5.5	260
<1 <3	7 4 <4	<10 <5 <10	<20 <30	38 31 40	<10 < 2 0 <10	1,400 1,100 1,860	440 430 330	350 350 309	0.3 0.55 ⊲0.2	<10 <24	1 <2 <10	620 560 525
	<3	46		5	<10	90	18	2,400	40.1		2	3,100
	16	<5		<20		72	<5	2,900	40.2		4 0.2	3,300
<1	17	<4	∢9	10		27	<5	2,970	40.2	8.5	4	3,500
<1	4	<5	<20	<20	<20	770	<5	310	4.2	<10	⊘	440
<2		4	<6	21	<10	<100	4.	2 207	4.2	<11	♦	151
<1	6	<5	<20	<20	<20	580	165	410	0.65	<10	2	780
<3	<4	<10	<30	26		810	166	382	⊲ 0.2	<24	-	755
 <1	7 7.1	<5 4	 < 9	220 16	00 <10	79 759	105 161	1,000 1,050	◆0.2 0.3	 8.6	4.2	2,500 2,610
<1	1	<5	<20	<20	<20	<20	<5	<5	◆0.2	10	⊘	100
<2	<1.1	4	<6	23	<10	<100	3.	5 260	◆0.2	<11	<5	136
<1	<1	<5	<20	<20	<20	82	<5	170	0.25	<10	<2	31
<3	<4	<10	<30	<11	<10	120	<5	129	⊲ 0.2	24	92	29
	<1	<5		56		85	<5	83	4 0.2		4.2	100
<1	<4	<4	⊲ 9	56	<10	90	<5	86	4 0.2	≪8		23
<1	1<1.1	<5	<20	<20	<20	83	<5	310	40.2	10	&	<20
<2		1 <4	<6	14	<10	121	17	284	40.2	<11	5	14
<1	<1	<5	<20	<20	<20	61	30	82	0.75	<10	⊘	62
<3	<4	<10	<30	20	<10	<60	24	63	⊲ 0.2	24	119	73
<u></u>	4	< 5		<20	<10	57	<5	33	40.2		⊲0.2	240
<1	<4	∢ 4	<9	16		65	13	33	40.2	48	∢4	28
<1	<1	\	<20	<20	<20	57	<5	120	4.2	<10	4	64
<2	<1.1	1 \ 4	<6	10	<10	152	11	106	4.2	<11	5	50

Table 8.—Chemical analyses of total recoverable metals from stream sediment [Constituents in parts per million; USGS, U.S. Geological Survey; State, Utah Department of Health; EPA, U.S. Environmental Protection Agency]

Arrival Arri					L(A, U.		Haitai Fruter					
Water Early Prospector Square Bolow Prospector Square Bolow Prospector Square USGS State EPA			-		Surfa	ace-water sa	ampling Apri	29, 1987				
resenic 190 180 2,173 220 229 300 256 190 159 arrium 470 180 263 510 200 37 255 190 159 arrium 470 180 263 510 200 37 255 190 190 159 arrium 100 49 186 80 32 31 50 49 44 admin 100 49 186 80 32 31 50 49 44 arrium 100 500 5,900 6,000 30,600 30,000 36,400 25,000 24,500 cead 5,200 4,500 5,900 6,000 30,600 30,000 36,400 25,000 24,500 cead 5,200 4,500 5,900 6,000 1,1430 1,300 1,570 1,500 1,430 recurry 4. 2.5 16 44 1,430 1,300 1,570 1,500 1,430 recurry 4. 2.5 16 44 28 31 31 26 18 rinc 5,500 4,000 7,390 7,800 6,130 9,300 8,320 4,500 4,710 Surface-water sampling on July 9, 1987 Silver Creek at Bonanza Drive Wyatt Earp Drive Prospector Square USGS State EPA USGS State EPA State EPA State EPA State EPA Inc 140 58 514 57 46 25 58 38 385 220 54 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 170 93 6,7 96 150 58 arrium 430 150 682 520 2500 25,000 24,000 15,000 430 154 ronn 35,000 23,000 86,300 25,000 24,000 13,000 32,000 24,000 20,000 6,370 cead 4,000 3,200 19,300 1,700 90 6,700 3,200 24,000 20,000 6,370 arrium 100 41 115 81 44 15 19 14 38 8.7 ron 35,000 23,000 86,300 25,000 24,000 13,000 3,000 20,000 20,000 6,370 arrium 100 41 115 81 44 15 19 14 36 8.7 ron 35,000 23,000 86,300 25,000 24,000 13,000 3,000 20,000 2	•											
Pace-Homer Ditch Pace-Homer Ditch Pace-Homer Ditch		USGS	State	EPA	USGS	State	EPA	State	EPA	State	EPA	
Pace-Homer Ditch Pace-Homer Ditch Pace-Homer Ditch	Arsenic	190	180	2,173	220		229	300	256	190	159	
httm://doi.org/10.10.00/10.0				263			200			37	77	
copper 330 240 280 390 191 360 343 360 293 ron 30,000 24,000 54,500 37,000 30,600 30,000 56,000 24,500 24,500 24,500 24,500 24,500 24,500 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,780 1,500 1,500 1,430 1,300 1,570 1,500 1,430 1,300 1,570 1,500 1,430 1,200 1,570 1,500 1,430 1,200 1,570 1,500 1,430 1,200 1,570 1,500 1,430 1,200 1,570 1,500 1,430 1,400 3,600 3,600 3,600 3,600 3,600 3,600 3,600 4,500 4,710 300 1,500 1,700 9,700 8,320 4,500 4,710 4,710 4,710 4,710 4,710 4,710 4,710 4,710 4,710 4,710							33					
ron 30,000 22,000 54,500 37,000 30,600 30,000 36,400 25,000 24,500 also 5,900 4,500 5,900 6,000 31,910 4,300 5,960 3,600 3,786 anganese 1,700 1,400 5,020 1,600 1,430 1,300 1,570 1,500 1,430 anganese 1,700 1,400 5,020 1,600 1,430 1,300 1,570 1,500 1,430 anganese 1,700 1,400 7,390 7,800 6,130 9,300 8,320 4,500 4,710 Silver Creek at Bonanza Drive										49		
ead 5,200 4,500 5,900 6,000 3,910 4,300 5,960 3,600 3,786 angaganese 1,700 1,400 5,020 1,600 1,430 1,300 1,570 1,500 1,430 ercury 4. 2.5 16 44 24 5.5 8.5 7 1.1 iliver 38 21 18 42 28 31 31 26 18 inc 5,500 4,000 7,390 7,800 6,130 9,300 8,320 4,500 4,710 Surface-water sampling on July 9, 1987 Silver Creek at Bonanza Drive Silver Creek at Wyatt Earp Drive Prospector Square Below Prospector Square USGS State EPA USGS State EPA S												
Angeneses 1,700 1,400 1,400 1,570 1,500 1,430 1,430 1,300 1,570 1,500 1,430 1,430 1,430 1,570 1,500 1,430 1,430 1,430 1,570 1,500 1,430 1,430 1,430 1,570 1,500 1,430 1,430 1,430 1,430 1,570 1,500 1,430 1,430 1,430 1,430 1,570 1,500 1,430		5-200		5.900			3,910		5.960		3,786	
Surface-water sampling on July 9, 1987 Silver Creek at Bonanza Drive Silver Creek Bolow Prospector Square Silver Creek at Bonanza Drive Silver Creek Bolow Prospector Square Silver Creek Bolo		1.700	1,400	5.020				1,300	1,570	1,500	1,430	
Surface-water sampling on July 9, 1987 Silver Creek at Bonanza Drive Pace-Homer Ditch Bonanza Drive			2.5								1.1	
Silver Creek at Bonanza Drive	ilver								31			
Silver Creek at Bonanza Drive Silver Creek at Bonanza Drive Silver Creek below Prospector Square Pace-Homer Ditch below Prospector Square	inc	5 , 500	4,000	7 ,39 0	7,800		6,130	9,300	8,320	4,500	4,710	
Bonanza Drive Wyatt Earp Drive Prospector Square below Prospector Square USGS State EPA USGS State EPA Sta					Surf	ace-water sa	empling on Ju	uly 9, 1987				
							-					
Name		USGS	State	EPA	USGS	State	EPA	State	EPA	State	EPA	
Adminim 32 29 123 23 24 14 83 63 43 14	lrsenic	140	58	514	57	46	25	58	385		54	
Chromium 100	Barium			682			93		96			
Copper 280				123			14	83		43		
Silver Creek at Bonanza Drive State EPA State EP												
ead 4,900 3,200 19,300 1,700 960 670 7,700 5,000 4,600 1,640 langanese 1,500 1,300 4,090 3,700 2,200 2,050 1,700 1,650 1,100 431 lercury 6.6 3.6 14 4.4 2.2 1.5 6.5 7.2 16 6.6 6.6 inc 6,800 4,500 22,900 4,100 3,300 3,130 15,000 12,800 7,400 2,330 Surface-water sampling on April 13, 1988 Silver Creek at Bonanza Drive Silver Creek at Bonanza Drive Wyatt Earp Drive Prospector Square Pace-Homer Ditch below Prospector Square				1,200								
Anganese 1,500		4 900	3,200	19 300	1 700			7 700				
Surface-water sampling on April 13, 1988 Silver Creek at Bonanza Drive State EPA State E		1.500		4.090								
Surface-water sampling on April 13, 1988 Silver Creek at Bonanza Drive State EPA State E		6.6	3.6	14		2.2						
Surface-water sampling on April 13, 1988 Silver Creek at Bonanza Drive Silver Creek at Bonanza Drive State EPA State			15							36	12	
Silver Creek at Bonanza Drive	inc	6,8 00	4,500	22,900	4,100	3,300	3,130	15,000	12,800	7,400	2,330	
State EPA					Surfa	ce-water sar	mpling on Ap	ril 13, 1988	 			
Arsenic 93 165 100 22.9 370 78.4 200 143 Sarium 200 73.1 140 109 6 164 170 215 Cadmium 15 96.5 14 3.5 140 23.6 31 28.9 Chromium 75.5 14.3 43 24.6 30 31.5 72 59.1 Copper 93 317 63 36.4 1,400 173 440 435 Copper 99.00 23,200 29,000 25,700 30,000 21,000 3,500 30,100 Cead 1,300 5,290 380 164 12,000 2,960 3,100 3,340 Changanese 1,800 1,910 410 294 1,900 1,450 1,300 1,500 Cercury 1.2 3.6 0.4 0.3 3.4 1.8 6.7 12 Cilver 6.8 31.6 3 2.7 86 15.4 20 22.8							;					
Barium 200 73.1 140 109 6 164 170 215 Cadmium 15 96.5 14 3.5 140 23.6 31 28.9 Chromium 75.5 14.3 43 24.6 30 31.5 72 59.1 Copper 93 317 63 36.4 1,400 173 440 435 Iron 2,000 23,200 29,000 25,700 30,000 21,000 3,500 30,100 Lead 1,300 5,290 380 164 12,000 2,960 3,100 3,340 Hanganese 1,800 1,910 410 294 1,900 1,450 1,300 1,500 Hercury 1,2 3.6 0.4 0.3 3.4 1,8 6.7 12 Silver 6.8 31.6 3 2.7 86 15.4 20 22.8		Sta	ate EPA		State	EPA		State	EPA	State	EPA	
Cadmium 15 96.5 14 3.5 140 23.6 31 28.9 Chromium 75.5 14.3 43 24.6 30 31.5 72 59.1 Copper 93 317 63 36.4 1,400 173 440 435 Gron 2,000 23,200 29,000 25,700 30,000 21,000 3,500 30,100 Lead 1,300 5,290 380 164 12,000 2,960 3,100 3,340 danganese 1,800 1,910 410 294 1,900 1,450 1,300 1,500 dercury 1,2 3.6 0.4 0.3 3.4 1.8 6.7 12 Gilver 6.8 31.6 3 2.7 86 15.4 20 22.8	Arsenic	<u> </u>	3 165		100	22.9				200	143	
Chromium 75.5 14.3 43 24.6 30 31.5 72 59.1 Copper 93 317 63 36.4 1,400 173 440 435 Chron 2,000 23,200 29,000 25,700 30,000 21,000 3,500 30,100 Lead 1,300 5,290 380 164 12,000 2,960 3,100 3,340 Manganese 1,800 1,910 410 294 1,900 1,450 1,300 1,500 Mercury 1.2 3.6 0.4 0.3 3.4 1.8 6.7 12 Silver 6.8 31.6 3 2.7 86 15.4 20 22.8		20	JU 73	.1	140	109			164		215	
Copper 93 317 63 36.4 1,400 173 440 435 Gron 2,000 23,200 29,000 25,700 30,000 21,000 3,500 30,100 Lead 1,300 5,290 380 164 12,000 2,960 3,100 3,340 Manganese 1,800 1,910 410 294 1,900 1,450 1,300 1,500 Mercury 1,2 3.6 0.4 0.3 3.4 1.8 6.7 12 Silver 6.8 31.6 3 2.7 86 15.4 20 22.8]	15 96	.5	14	3.5		140	23.6	31	28.9	
Iron 2,000 23,200 29,000 25,700 30,000 21,000 3,500 30,100 Lead 1,300 5,290 380 164 12,000 2,960 3,100 3,340 Manganese 1,800 1,910 410 294 1,900 1,450 1,300 1,500 Mercury 1,2 3.6 0.4 0.3 3.4 1.8 6.7 12 Silver 6.8 31.6 3 2.7 86 15.4 20 22.8			73.5 14 32 317	.3	43 63	24.0 36 1		3U 1.400			735 735	
Lead 1,300 5,290 380 164 12,000 2,960 3,100 3,340 Manganese 1,800 1,910 410 294 1,900 1,450 1,300 1,500 Mercury 1.2 3.6 0.4 0.3 3.4 1.8 6.7 12 Silver 6.8 31.6 3 2.7 86 15.4 20 22.8		2 0	JU 54 5UU 22 211		29.000	25.700	ล	1,900 1,000 21	77.2		30, 100	
Manganese 1,800 1,910 410 294 1,900 1,450 1,300 1,500 Mercury 1.2 3.6 0.4 0.3 3.4 1.8 6.7 12 Silver 6.8 31.6 3 2.7 86 15.4 20 22.8		1.3	~ 25,200 30 5,290		380	164	1:	2.000	.960	3,100	3,340	
Merčury 1.2 3.6 0.4 0.3 3.4 1.8 6.7 12 Silver 6.8 31.6 3 2.7 86 15.4 20 22.8		1.80	00 1 , 910		410	294	-	1,900 1	.450	1,300	1,500	
	lercury	- • •	1.2 3	.6	0.4	0.3		3.4	1.8	6.7	12	
tine 2,100 19,000 /20 3/2 30,000 3,670 4,700 4,890	ilver		6.8 31	.6	3	2.7	-		15.4	20	22.8	
	inc	2,10	JU 19,000		/20	3/2	3	U , 000 3	, b/0	4,700	4,890	

Table 9.—Chemical analyses of [°C, degrees Celsius; ¡ʎ/cm, microsiemens per centimeter at 25 °Celsius; EPA, U.S. Environmental Protection Agency; mg/L, milligrams per liter;

										· .					
State 354 60, 260 3 92	Location	of	ature. field	cific con- duct- ance, field	field	ing- agency	linity, lab (mg/L	carbo- nate	nate	cium, dis- solved (mg/L	sium, dis- solved (mg/L	dis- solved (mg/L	, sium, dis- solved (mg/L	Chlo- ride, dis- solved (mg/L as Cl)	Sul- fate, dis- solved (mg/L as SO ₄)
State 137 168 0 340 63 280 3 88 PA		08-31-87	13.5	3,830	6.8	State				340	60	260	3	910 925	260 250
State 138 169 0 320 55 270 3 88 88 150 10 10 10 10 10 10 1		11-30-87	10.5	3,530	6.8	State					63 62.1	280 310	3 3 . 52	885 	270 —
State 230		04-11-88	11.0	3,380	6.1	State				320 294	55 51.8		3 3.5	889. 860	9 240 260
State 114 140 0 260 52 88 2 2 45	S-MW-1d D-2-4)9bdd-2	08-31-87	13.0	1,840	6.8	State				230	44	77	2	380 380 	240 240 —
State 113 260 48 88 2 50		11-30-87	10.0	2,060	6.7	State				260 249	52 49.3	88 91.:	2 1 2.39	450 	270
State 113 138 0 260 49 87 2 53 EPA 102 230 44.5 80.2 1.6 43 PS PS-MM-2 (0-2-4)9aac-2		02-23-88	10.0	2,100	7.4	State				260 248	48 47.6	88 83.6	2 5 2.5	500	250 —
State 230		04-11-88	12.0	2,160	6.6	State	113	138	0	260	49	87	2	500 534. 437	260 9 240 238
State 121 148 0 230 46 54 2 36 EPA 255 50.5 61.5 2.04 - 02-24-88 8.5 1,220 7.2 USGS State 121 240 43 50 2 36 EPA 220 42.1 48 2.2 - 04-11-88 12.5 1,710 6.2 USGS 122 220 43 50 1.9 34 State 121 147 0 220 42 49 2 36 EPA 112 210 40.3 48.6 1.4 33 PS-MM-3 (0-2-4)9aab-1 09-03-87 10.0 1,730 7.0 USGS 146 180 35 110 1.9 35 State 180 36 110 2 34 EPA 184 35.9 114 1.63 - 12-01-87 10.0 1,630 6.7 USGS State 154 188 0 170 34 110 2 34 EPA 186 36.9 134 1.94 - 02-24-88 9.0 1,580 7.0 USGS State 155 160 31 110 2 31 EPA 153 29.5 104 2.3 - State 23 State 155 160 31 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA 153 29.5 104 2.3 - 110 2 31 EPA	S-MW-2 D-2-4)9aac-2	09-01-87	14.0	1,740	6.7	State				230	44	53	2	370 357	200 210 —
State 121 240 43 50 2 36		11-30-87	10.0	1,770	6.5	State					46 50.5	54 61.	2 5 2.04	362	210
PS-MH-3 (0-2-4)9aab-1 09-03-87 10.0 1,730 7.0 USGS 146 180 35 110 1.9 35 State 180 36 110 2 34 (0-2-4)9aab-1 12-01-87 10.0 1,630 6.7 USGS State 154 188 0 170 34 110 2 30 EPA 186 36.9 134 1.94 02-24-88 9.0 1,580 7.0 USGS State 155 160 31 110 2 31 EPA 153 29.5 104 2.3		02-24-88	8.5	1,220	7.2	State			 	240 220	43 42.1	50 48	2 2.2	360	200
12-01-87 10.0 1,630 6.7 USGS State 154 188 0 170 34 110 2 30 EPA 186 36.9 134 1.94 02-24-88 9.0 1,580 7.0 USGS State 155 160 31 110 2 31 EPA 153 29.5 104 2.3		04-11-88	12.5	1,710	6.2	State	121	147	0	220 220 210	42	49	1.9 2 6 1.4	340 364. 332	230 210 226
State 154 188 0 170 34 110 2 30 EPA 186 36.9 134 1.94 02-24-88 9.0 1,580 7.0 USGS State 155 160 31 110 2 31 EPA 153 29.5 104 2.3		09-03-87	10.0	1,730	7.0	State		 		180	35 36 35.9	110	1.9 2 1.63	350 345 	190 180
State 155 160 31 110 2 31 EPA 153 29.5 104 2.3 -		12-01-87	10.0	1,630	6.7	State				170 186	34 36.9	110 134	2 1 .94	300	200
04-12-88 13.5 1,580 6.7 USGS 151 170 34 110 1.9 33 State 150 184 0 170 32 110 2 34		02-24-88	9.0	1,580	7.0	State				160 153	31 29.5		2 2.3	310 	180
EPA 142 157 31.3 1.6 29		04-12-88	13.5	1,580	6.7	USGS State EPA	151 150 142	184	0	170 170 157	34 32 31.3	110	1.9 2 1.6	330 349. 292	9 180

water from wells and drains USGS, U.S. Geological Survey; State, State of Utah Department of Health; $\mu g/L$, micrograms per liter; dashes indicate no data; <, less than]

										_					
Alum- inum, dis- solved (µg/L as Al)	Arsenic, dis- solved (µg/L as As)	dis- solved (µg/L	dis- solved	Cad- mium, dis- solved (µg/L as Cd)	Chro- mium, dis- solved (µg/L as Cr)	Cobalt, dis- solved (µg/L as Co)	Copper dis- solved (µg/L as Cu)	, Cyan- ide, Total (µg/L as Cn)	Iron, dis- solved (µg/L as Fe)	Lead, dis- solved (µg/L as Pb)	dis- solved (µg/L	Mercury, dis- solved (µg/L as Hg)	Nickel, dis- solved (µg/L as Ni)	Silver, dis- solved (µg/L as Ag)	Zinc, dis- solved (µg/L as Zn)
<400 <100	<1 <1.1 <6	120 96 103	<0.5 <1 <4	<1 <1 <4	<5 <30 <9	<3 <20 <7	<10 <20 <17	 ₹ 3 ₹ 10	120 <20 <100	<10 <5 <20	110 94 99.1	 <0.2 <0.2	<10 <6	1 <2 9.2	19 25 22.5
<400 <90	<1.1 2	94 109	2 <2	0.7	<5 <10	⊘ 0 ⊘ 5	⊘ 0 ⋖ 8	⊘ 0 <10	 57	<5 1.7	90 99	<0.2 <0.2	<10 <22	2 <6	69 71
<400 <100	<1 Q	100 98	<1 <2	<1 <1.1	<5 <4	<20 <6	⊘ 0 16	⊘ 0 <10	<20 <100	<5 <30	22 28	0.23 <0.2	<10 <11	<2 <5	<20 14
<400 <100	<1 <1.1 <6	110 89 91.6	<0.5 1 <4	<1 - <4	<5 <30 ≪9	<3 <20 <7	<10 <20 <17	 ≪0 <10	79 <100	<10 <5 <20	460 430 434	 ≪0.2 ≪0.2	10 7	<1 <2 <7	12 19 <7
<400 113	<1.1 <2	70 7 9	1<2	_ 1.3	<5 <10	⊘ 0 ⊘ 5	⊘ 0 18	⊘ 0 <10	51 101	<5 1.6	75 80	<0.2 <0.2	<10 <22	<2 <6	<20 85
⊘ 00 <100	<1 <3	63 60	<1 <4	<1 <0.5	<5 ∢ 9	⊘ 0	<20 <12	⊘ 0 <1	<20 <100	<5 <2	16 14	<0.2 0.2	<10 13	<2 <8	44 <20
<400 <100	1 1.5 <∕2	74 65 	<0.5 <1 <2	∢ ∢1 ∢1.1	\$ \$ 4	<3 <20 <6	<10 <20 12	~ 20 √ 10	4 <20 138	<10 <5 <3	9 12 14	0.23 <0.2	<10 <10 <11	<1 <2 15	5 <20 · 48
<400 <100	<1 <1.1 <6	65 53 47.1	<0.5 1 <4	<1 1 <4	<5 <30 ≪9	<3 <20 <7	<10 <20 <17	 ≪0 <10	63 95 <100	<10 <5 <2	110 110 79. 7	<0.2 <0.2	<10 <6	<1 <2 <7	30 26 <7
<400 <90	<1.1 •2	55 67	<1 <2	 0.4	<5 <10	⊘ 0 ⊘ 5	⊘ 0 ⋖ 8	⊘ 0 <10	33 26	<5 1.8	30 32	0.2 <0.2	<10 <22	<2 <6	41 22
< 200 <100	<1 <3	54 51	<1 <4	<1 1	♦	⊘ 0 ✓9	⊘ 0 20	⊘ 0 <1	25 <100	<5 2.3	64 80	<0.2 0.4	<10 <7	<2 <8	89 <20
<400 <100	2 <1 •2	61 54 54	<0.5 <1 <2	3 <1 <1.1	<5 <5 ∢4	<3 <20 <6	<10 <20 11	~ 20 <10	6 <20 100	<10 <5 <3	3 <5 7.3	2.6 <0.2	<10 <10 <11	1 <2 <5	3 <20 <7
<400 <100	<1 <1.1 <6	110 100 101	<0.5 <1 <4	<1 <1 <4	<5 <30 <9	<3 <20 <7	<10 <20 27.8	~20 ~10	14 <20 <100	<10 <5 <20	6 8 8.8	<0.2 <0.2	<10 <6	<1 <2 <7	6 <15 <7
<400 <90	1.1 •2	70 86	1 <2	_ 0.2	<5 <10	⊘ 0 ⊘ 5	₹ 0 ₹ 8	<2 0 <10	<20 100	<5 2.5	6 5	<0.2 <0.2	<10 <22	<2 <6	<20 16
<200 <100	<1 <3	71 63	<1 <4	<1 ≪0. 5	<5 ♦ 9	⊘ 0 ⊘ 9	<20 <12	< 20 <1	27 <100	<5 3.2		<0.2 0.4	<10 <7	<2 <8	52 <20
<400 <100	<1 <1.1 <2	86 76 70	<0.5 <1 <2	<1 <1 <1.1	<5 <5 4.5	<3 <20 <6	<10 <20 34	20 <10	140 <20 <100	<10 <5 <3	13 13 7.8	<0.2 <0.2	<10 <10 <11	<1 <2 <5	12 26 9.1

Table 9.—Chemical analyses of

Location	Date of sammple	Temper- ature, field (°C)	Spe- cific con- duct- ance, field (µS/cm)	pH, field (units)	Report- ing- agency	Alka- linity, lab (mg/L as CaCO ₃)	Bi- carbo- nate (mg/L)	nate (mg/L)	Cal- cium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg) a	(mg/L (dis- solved : (mg/L	(mg/L	Sul- fate, dis- solved (mg/L s SO ₄)
PS-MW-4 (D-2-4)0adc-1	09-01-87	13.0	1,490	6.4	USGS State EPA	87 	 		220 220 226	38 39 39.1	42 53 54.9	6.7 7 8.1	140 132	540 530
	12-01-87	11.0	1,540	6.9	USGS State EPA	104	128	0	240 262	39 47.8	51 62.6	6 6.93	130	540 —
	02-24-88	10.5	1,710	7.3	USGS State EPA	97 	 	 	230 220	40 38.2	80 71.4	7 6.6	262 	450
	04-12-88	12.0	1,380	6.2	USGS State EPA	60 60 55	 74 	0	200 190 177	34 33 30.7	47 52 50.9	7.2 7 5.3	150 153 145	490 470 —
PS-MM-5 (D-2-4)10bab-1	09-01-87	14.5	1,350	6.5	USGS State EPA	54 	 	 	190 200 206	34 34 35.2	56 54 57.1	4.2 4 5.25	130 125 	500 500
	12-01-87	11.0	1,300	6.7	USGS State EPA	80 80 	98 	 0 	190 190 189	33 34 34.8	49 48 55.2	3.3 3 3.39	110 105 	460 470
	02-24-88	11.5	1,250	6.9	USGS State EPA	104 104 		 	190 210 199	35 37 36.5	39 40 40.8	 2 2.3	88 90 	490 500
	04-12-88	12.0	1,300	6.2	USGS State EPA	63 63 58	77 	 0 	220 180 165	43 32 29.3	49 50 46	3.8 4 2.5	130 130 125	470 460 484
PS-MH-5d (0-2-4)10bcb-2	02-25-88	12.0	775	7.5	USGS State EPA	114 114 	 	 	110 110 108	27 27 25.9	16 16 15	1.7 2 1.4	33 34.9	260 250
	04-12-88	12.0	775	7.1	USGS State EPA	115 115 108	141	 0 	110 110 99. 8	27 26 24	16 15 14.2	1.2 1 0.7	33 31.9 36	260 240 258
PS-MN-6 (0-2-4)10bbc-1	09-02-87	16.0	1,520	6.5	USGS State EPA	55 	 	 	230 240 247	33 33 34	44 42 44.6	4.4 5 5.48	130 132	550 550
	12-01-87	11.0	1,470	6.9	USGS State EPA	55 57 	70 	 0 	230 240 236	32 32 33.2	42 40 43.8	4.3 4 4.3	140 130	540 540
02	02-24-88	11.0	1,380	6.5	USGS State EPA	55 56 	 	 	210 220 198	29 29 27.3	38 38 33.8	4.3 4	130 127 	490 500
	04-12-88	14.0	1,370	6.3	USGS State EPA	56 55 50	67	 0 	220 230 208	32 30 29.5	41 40 38.5	4.3 4 2.9	130 138 112	540 530

Alum- inum, dis- solved (µg/L as Al)	Arsenic, dis- solved (µg/L as As)	dis- solved (µg/L	Beryl- ium, dis- solved (µg/L) as Be)	Cad- mium, dis- solved (µg/L as Cd)	Chro- mium, dis- solved (µg/L as Cr)	Cobalt, dis- solved (µg/L as Co)	Copper dis- solved (µg/L as Cu)	(µg/L	Iron, dis- solved (µg/L as Fe)	Lead, dis- solved (µg/L as Pb)	dis-	dis- solved (µg/L	Nickel, dis- solved (µg/L as Ni)	Silver, dis- solved (µg/L as Ag)	Zinc, dis- solved (µg/L as Zn)
<400 <100	<1 <1.1 ⋖	38 27 40	<0.5 <1 <4	5 6 6.4	<5 <30 <9	<3 <20 <7	<10 <20 <17	~~ ~0 ~10	23 290 <100	<10 <5 <2	300 300 317	 <0.2 <0.2	<10 <6	<1 <2 <7	1,800 1,700 1,940
<400 <90	<1.1 <₹	40 47	2 <2	3 3.2	<5 <10	⊘ 0 ⊘ 5	⊘ 0 ⋖ 8	< 20 <10	120 145	<5 3.1	1,800 2,250	<0.2 <0.2	<10 <22	<2 <6	640 759
< 200 <100	1 <3	43 <45	<1 4	2 √0. 5	<5 <9	⊘ 0 ⊘ 9	⊘ 0 26	⊘ 0 <1	91 259	<5 <2	2,700 2,750	<0.2 <0.2	10 9.5	<2 5 <8	400 361
<400 <100	<1 <1.1 <2	60 22 20	<0.5 <1 <2	9 8 <5.5	ও ও	<3 <20 <6	<10 <20 12	 ∕20 18	3 <20 <100	<10 <5 <3	46 46 44	<0.2 <0.2	<10 <10 <11	<1 <2 <5	2,300 2,400 2,290
 <400 <100	<1 1.2 <6	51 38 42.5	<0.5 <1 <4	$\frac{6}{7.1}$	<5 <30 <9	.<3 <20 <7	<10 <20 <17	~20 <10	33 380 <100	<10 <5 <2	120 120 126	<0.2 <0.2	10 12.4	<1 <2 <7	2,300 2,100 2,460
 <400 <90	1 <1.1 •2	50 45 49	<0.5 1 <2	3 - 3.1	<5 <5 <10	<3 <20 <25	10 20 8	~20 <10	29 86 32	<10 <5 2.7	260 260 276	0.2 <0.2	<10 <10 <22	1 <2 <6	880 930 899
<200 <100	<1 <1 <3	38 31 <45	<0.5 <1 <4	3 <1 < 0.5	ক ক প্ৰ	<3 <20 <9	<10 <20 <12	 <20 <1	150 20 <100	<10 <5 3	120 100 487	 <0.2 0.2	<10 <10 <7	<1 <2 <8	71 97 <20
<400 <100	<1 <1.1 <2	62 32 29	<0.5 <1 <2	2 - 3.6	<5 <5 5.2	<3 <20 <6	<10 <20 12	20 16	4 <20 121	<10 <5 <3	2 44 47	 <0.2 <0.2	<10 <10 13	<1 <2 <5	1,900 1,780
460 <100	<1 <1 <3	89 82 <45	<0.5 <1 <4	2 <1 <0.5	ক ক প	<3 <20 <9	<10 <20 <12	 <20 <1	14 260 <100	<10 <5 10	500 470 107	 <0.2 0.4	<10 <10 <7	<1 <2 <8	19 59 74
<400 <100	2 <1.1 <2	73 67 61	<0.5 <1 <2	<1 <1 <1.1	5 5	3 <20 <6	<10 <20 14	 <20 <10	3 <20 <100	<10 <5 <3	88 86 82	<0.2 <0.2	<10 <10 <11	<1 <2 <5	6 <20 8.8
 <400 136	<1 <1.1 <6	38 25 40	<0.5 <1 <4	6 - 5.9	<5 <30 <9	<3 <20 <7	<10 <20 <17	 <20 <10	14 160 136	<10 <5 <2	440 440 456	 <0.2 <0.2	<10 <6	<1 <2 <7	1,100 1,100 1,210
 <400 <90	1 <1.1 •2	27 22 23	<0.5 <1 <2	7 5.8	<5 <5 <10	<3 <20 <25	<10 <20 <8	 <20 <10	51 89	<10 <5 2.0	270 280 287	<0.2 <0.2	<10 <10 <22	<1 <2 <6	1,200 1,400 1,300
 <200 <100	2 <1 <3	34 26 <45	<0.5 <1 <4	7 6 5.4	<5 <5 ⊗	<3 <20 <9	<10 <20 14	 ≪0 <1	9 <20 <100	<10 <5 2.6	80 85 82	0.29 0.3	<10 <10 <7	1 <2 <8	1,100 1,100 1,060
<400 <100	<1.1 <1.1 <∕2	31 22 20	<0.5 <1 <2	8 8 ≪5.5	<5 <5 5.1	<3 <20 <6	<10 <20 18	 <20 <10	6 <20 <100	<10 <5 <3	 57 63	<0.2 <0.2	<10 <10 <11	<1 <2 <5	1,500 1,600 1,540

Table 9.--Chemical analyses of

Location	Date of sample	Temper- ature, field (°C)	Spe- cific con- duct- ance, field (us/cm)	pH, field (units)	Report- ing- agency	Alka- linity, lab (mg/L as CaCO ₃)	Bi- carbo- nate (mg/L)	Carbo- nate (mg/L)	Cal- cium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg) a	(mg/L (mg/L	(mg/L	Sul- fate dis- solved (mg/L s SO ₄)
PS-MW-7 (D-2-4)10bba-1	09-02-87	16.0	1,570	6.4	USGS State EPA	47 		==	250 260 269	33 33 33.2	42 52 53.1	5.7 6 7.05	110 110	660 660
	12-01-87	10.0	1,530	6.4	USGS State EPA	49 59 	72 	0 	240 260 225	30 31 29.2	41 51 50.3	5.4 6 5.34	110 110	630 640 -
	02-25-88	6.5	1,310	6.2	USGS State EPA	50 56 	 	 	220 240 220	29 29 27.4	42 51 46.6	2.5 5 5.1	120 120 	580 (590
	04-12-88	12.5	1,450	6.0	USGS State EPA	59 58 	71 	 0 	230 230 216	30 28 27.2	42 49 47.2	5.5 5 3.5	120 120 112	610 580 —
PS-MW-7d (D-2-4)10bba-2	02-25-88	8.0	355	7.5	USGS State EPA	121 119 	 	 	43 44 41.8	11 12 11	11 12 10.3	1.1 1 <0.5	12 12	45 45
	04-12-88	13.5	339	7.4	USGS State EPA	123 123 115	150 	 0 	44 43 37.2	12 11 10	11 11 9.4	0.9 <1 0.5	12 12.3	46 44 31
PS-MW-8 (D-2-4)9aac-3	09-01-87	18.5	1,470	6.8	USGS State EPA	52 	 	 	220 220 228	31 32 32.2	49 48 48.8	6.2 7 7. 4 9	160 155 	490 490
	12-01-87	11.0	1,310	6.6	USGS State EPA	55 57 	70 	0	190 200 203	27 26 30.3	42 44 49.9	5 6 6.16	140 132	440 430 —
	02-24-88	10.0	1,230	7.0	USGS State EPA	57 59 	 	 	180 190 183	27 27 26.1	30 39 37.4	5.5 6 5.8	140 135 	430 410
	04-12-88	15.0	1,410	6.3	USGS State EPA	56 56 50	68 	0	220 230 —	33 30 27.9	49 49 42.9	7 6 4.8	160 171 170	520 520 512
PS-MW-9 (D-2-4)10bab-1	09-02-87	15.0	1,450	7.2	USGS State EPA	213 	 	 	190 200 206	¥ ¥ ¥.8	57 64 68.1	2.6 3 2.65	130 147 	340 330
	12-02-87	13.0	1,350	6.7	USGS State EPA	130 218	266 	 0 	190 210 164	31 33 26.8	63 60 48.7	2.6 3 2.19	150 135	330 340
	02=25-88	8.0	1,260	7.1	USGS State EPA	196 	 	 	170 173	30 29.1	50 47.4	2 1.9	170	270
	04-13-88	11.0	1,500	7.2	USGS State EPA	213 212 195	259 	 0 	210 220 200	38 37 33.6	64 66 59	2.3 2 1.6	220 227.5 207	390 330

									-							
400 4.5 21 41 15 30 40 40 45 240 40.2 2 2,000 100 46 40 40 8.1 9 47 410 410 42 224 40.2 21 22 26 40.5 8 40 40 40 40 70 40 42 42 40.0 70 40.0 20 44 45 68.0 0.2 215.0 42 24,00 40 44 45 68.0 0.2 215.0 42 21,00 40 42 40.0 70 40 42 40.0 70 40	inum, dis- solved (µg/L	dis- solved (µg/L	dis- solved (µg/L	ium, dis- solved (µg/L)	mium, dis- solved (µg/L	mium, dis- solved (µg/L	dis- solved (µg/L	dis- solved (µg/L	ide, Total (µg/L	dis- solved (µg/L	dis- solved (µg/L	nese, dis- solved (µg/L	dis- solved (µg/L	dis- solved (µq/L	dis- solved (µq/L	dis- solved (µg/L
400 4.1 420 2 8 4 40 40 44 4.5 68.0 0.2 15.0 42 2,400 429 2.1 22 4.0 5.9 4.0 40 40 40 40 40 40 42 22 4.2 2.100 42 1.0 40 42 1.0 41 2.100 4	<400	<1.5	21	<1	15	<30	<20	<20	⊘ 0	<20	<5	240	<0.2		<2	2,000
2000 41 16 61 8 45 20 20 20 130 45 32 8.3 15 42 2,100 150 43 88 44 - 9 49 14 41 151 12 29 0.4 7.7 48 2,100 4000 42 14 41 41 41 41 41 41 41 41 41 41 40 400 43 14 40.2 410 42 2,100 400 43 14 40.2 410 42 2,100 40 40 40 40 41 40 400 43 14 40.2 410 42 41 40 40 40 40 42 40 42 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40	<400	<1.1	<20	2	8	<5	<20	⊘ 0	<20	44	<5	68.0	0.2	15.0	<2	2,400
4400 4.1.1 14 <1	<200	<1	16	<1	8	<5	<20	<20	<20	130	<5	32	8.3	15	<2	2,100
200	<400	<1.1	14	<1	<1	<5	<20	<20	⊘ 0	<20	<5	11	<0.2	<10	<2	2,100
4400 4.1.1 46 41 41 45 20 20 26 45 420 40.2 410 42 400 41.1 45 80 40 400 41.1 45 8.1	<200	<1	35	<1	<1	<5	<20	⊘ 0	<20	65	<5	160	<0.2	<10	<2	42
4400 41.1 23 <1	<400	<1.1	46	<1	<1	<5	<20	<20	⊘ 0	26	<5	420	<0.2	<10	<2	<20
400 -1.1 21 -1 12 -5 -20 -20 -20 20 -5 430 0.25 10.0 -2 2,700 -90 3.8 24 -2 16 15 -25 -8 -10 21 9.3 472 -0.2 -22 -6 2,890	<400	<1.1	23	<1	29	<30	⊘ 0	<20	⊘ 0	<20	<5	420	<0.2		<2	2,800
200 <1	<400	<1.1	21	<1	12	<5	<20	<20	<20	20	<5	430	0.25	10.0	<2	2,700
400 <1.1	<200	<1	17	<1	14	14	<20	⊘ 0	<20	22	<5	110	<0.2	<10	<2	2,100
400 6.5 53 <1	<400	<1.1	22	<1	22	<5	<20	< 20	<20	<20	<5	120	<0.2	<10	<2	2,900
5 68 <0.5 <1 <5 <3 <10 65 <10 1,300 <10 <10 7 <400 5.0 50 <1 <5 <5 <20 <20 <20 20 26 <5 1,500 0.2 <10 <2 <20 123 3.4 43 <2 0.2 <10 <25 <8 <10 476 7.4 1,400 <0.2 <22 <6 16 <200 2 35 <1 <1 <5 <20 <20 <20 <20 610 <5 850 0.3 <10 <2 <10 <2 51 <100 <3 <45 <4 9 <9 <12 <1 595 6.3 889 0.3 <7 <8 <20 4 52 <0.5 2 <5 <3 <10 950 <10 1,200 <10 1 6	<400	6.5	54 53 57.4	<1	<1	<5 <30 <9	<20	<20	<20	50	<5	1,600 1,200 1,290				10 <15 7.7
4 52 <0.5 2 <5 <3 <10 950 <10 1,200 <10 1 6	<400	5.0	50		<5	<5	<20	<20	⊘ 0	26	<10 <5 7.4	1,300 1,500 1,400	0.2	<10	<2	7
4 52 <0.5	<200 <100	2 3	35 <45			⋖ 5 ⋖ 9	⊘ 0 ⋖ 9	⊘ 0 <12	⊘ 0 <1	610 595	<5 6.3	850 899	0.3 0.3	<10 <7	<2 <8	51 <20
	<400	2.5	43	<1	<1	ধ	< 20	⊘ 0	⊘ 0	950	<5	1,200 1,100 1,100	<0.2	<10	1 <2 <5	6 <20 16

Location	Date of sample	Temper- ature, field (°C)	Spe- cific con- duct- ance, field (µS/Om)	pH, field (units)	Report- ing- agency	Alka- linity, lab (mg/L as CaCO ₃)	Bi- carbo- nate (mg/L)	Carbo- nate (mg/L)	Cal- cium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg) a	(mg/L (mg/L	(mg/L	Sul- fate, dis- olved (mg/L SO ₄)
PS-MW-10 (D-2-4)3dcd-1	09-03-87	14.0	1,120	7.3	USGS State EPA	230 		 	140 130 140	35 36 36.3	46 45 46.9	2.7 3 3.13	90 92.4	230 230 —
	12-02-87	10.0	965	7.1	USGS State EPA	222 223	272	 0 -	130 130 131	37 39 38.5	38 41 40.9	1.9 2 1.95	100 83.9	190 84 —
	02-26-88	8.0	940	7.2	USGS State EPA	203	 		120 113	35 32.8	35 33.8	2 1.2	101	160 —
	04-13-88	7.0	1,130	7.2	USGS State EPA	229 227 215	277	 0 	150 150 141	41 41 38.8	43 43 40.9	2.2 2 1.3	110 115 95	260 250 251
PS-MW-11 (D-2-4)3ccd-1	09-03-87	11.5	1 ,92 0	6.7	USGS State EPA	264 	 	 	290 320 330	57 59 58.8	44 42 44.6	2.1 2 1.88	160 155	520 500 —
	12-02-87	10.0	1,370	6.8	USGS State EPA	200	244 	0	220 204	38 38.1	35 34.3	2 1.93	170	300
٠	02-26-88	7.0	1,260	6.5	USGS State EPA	170 	 	 	92 88.8	24 22.8	16 14.7	1 1.2	38 . 9	130
	04-14-88	9.0	1,220	6.5	USGS State EPA	172 170 160	208 	0	180 190 165	35 34 30.2	28 28 24.2	1.5 2 0.5	180 187.5 167	250 240 244
PS-MW-11d (D-2-4)3cdc-1	02-26-88	9.0	648	7.6	USGS State EPA	166 170 			95 92 88.8	24 24 22.8	16 16 14.7	1.6 1 1.2	38 38.9 	130 130 —
	04-14-88	8.5	682	9.0	USGS State EPA	171 170 	208	00 	91 89 81	24 24 20.9	16 16 13.9	1.3 1 <0.5	38 39 35	140 130 122
PS-MW-12 (D-2-4)9acc-1	08-31-87	13.0	525	7.8	USGS State EPA	92 	 		68 67 64.8	18 18 17.6	12 12 11.5	1.1 1 <0.5	40 37.5	85 83 —
	11-30-87	9.0	530	6.9	USGS State EPA	119	146	0	72 74.2	20 20.3	10 11	<1 1.11	96.9 	190 —
	02-23-88	8.5	555	7.6	USGS State EPA	117	 		73 67.5	19 18.1	10 9.4	1	37 	94
	04-11-88	13.0	580	6.8	USGS State EPA	119 119 110	145 	0	74 70 65.8	20 20 18.2	10 10 9.3	1 <1 0.5	38 39.5 40	96 90

Alum- inum, dis- solved (µg/L as Al)	Arsenic, dis- solved (µg/L as As)	Barium, dis- solved (µg/L as Ba)	Beryl- ium, dis- solved (µg/L) as Be)	Cad- mium, dis- solved (µg/L as Cd)	Chro- mium, dis- solved (µg/L as Cr)	Cobalt, dis- solved (µg/L as Co)	Copper dis- solved (µg/L as Cu)	Cyan- ide, Total (µg/L as Cn)	Iron, dis- solved (µg/L as Fe)	Lead, dis- solved (µg/L as Pb)	Manga- nese, dis- solved (µg/L as Mn)	Mercury, dis- solved (µg/L as Hg)	Nickel, dis- solved (μg/L as Ni)	Silver, dis- solved (µg/L as Ag)	Zinc, dis- solved (µg/L as Zn)
<400 <100	<1 28 23.2	110 110 110	<0.5 <1 <4	7 7 8.6	<5 <30 ≪9	<3 <20 <7	<10 <20 18.5	 <20 <10	6 < 2 0 <100	40 30 43.4	1,100 1,100 1,130	 •0.2 •0.2	<10 <6	<1 <2 9.7	1,900 1,800 1,950
<400 <90	11 13 11	93 91 94	<0.5 <1 <2	3 3 3.8	<5 <5 <10	<3 <20 <25	<10 <20 <8	~20 <10	6 21 28	20 15 22	430 420 442	 0.2 0.52	<10 <10 <22	<1 <2 <6	650 680 697
<200 <100	11 9	75 88	<1 <4	2 8.9	<5 <9	<20 <9	⊘ 0 22	⊘ 0 <1	28 <100	15 20	380 389	14.9 0.2	<10 <7	<2 48	610 614
 <400 <100	10 14 9.6	100 91 88	<0.5 <1 <2	6 7 5	<5 <5 4.1	<3 <20 <6	<10 <20 22	<20 <10	19 <20 114	30 20 31	1,300 1,200 1,220	0.2 <0.2	<10 <10 <11	<1 <2 <5	1,900 1,800 1,930
<400 <100	<1 1.5 <6	81 68 67.4	<0.5 <1 <4	<1 3 <4	<5 <30 ≪9	6 <20 <7	<10 <20 <17	~20 <10	28 320 <100	<10 <5 <2	550 570 577	 ≪0.2 ≪0.2	<10 <6	<1 <2 <7	13 18.0 9.9
<400 1,000	<1.1 &	37 42	<1 <2	<1 0.9	<5 <10	⊘ 0 ⊘ 5	20 ∢8	⊘ 0 < 10	<20 	<5 5	240 320	0.37 < 0.2	<10 <22	<2 <6	<20 31
<200 <100	<1 <3	29 <45	<1 <4	<1 1.2	<5 ≪9	⊘ 0 •	23 <13	⊘ 0 11	120 115	<5 2.9	140 141	<0.2 0.34	<10 <7	<2 <8	47 <20
 <400 <100	<1 <1 <2	34 25 	<0.5 <1 <2	<1 <1 <1.1	ও ও	<3 <20 <6	<10 <20 25	 <20 <10	3 <20 <100	<10 <5 <3	130 120 118	<0.2 <0.2	<10 <10 <11	<1 <2 <5	11 <20 38
<200 <100	2 <1 <3	59 52 48	<0.5 <1 <4	2 <1 1.5	ক ক	₹ ₹0 ₹9	<10 <20 <12	 <20 <1	8 <100	<10 <5 11	500 480 482	 <0.2 0.2	<10 <10 <7	<1 <2 &8	6 39 <20
<400 <100	2 <1 2.6	60 51 56	<0.5 <1 <2	<1 <1 <1.1	₹	<3 <20 <6	<10 <20 29	20 <10	3 <20 118	<10 <5 3.1	260 250 244	 <0.2 <0.2	<10 <10 <11	<1 <2 <5	3 <20 13
<400 135	1 <1.1 •6	65 52 52.6	<0.5 <1 <4	<1 1 <4	<5 <30 ≪9	<3 <20 <7	<10 <20 <17	 <20 <10	10 <100	<10 <5 2.75	39 43 39.4	<0.2 <0.2	<10 <6	<1 <2 7.6	38 40 <7
<400 90	25 <2	60 66	<1 <2	4 0.2	<5 <10	⊘ 0 ⊘ 5	⊘ 0 ⋖ 8	⊘ 0 <10	<20 23	<5 1.3	8 8	0.3 0.2	<10 <22	<2 <6	<20 17
<200 <100	2 3	59 53	<1 <4	1 √0. 5	< 5 ∢ 9	⊘ 0 ⋖ 9	⊘ 0 12	⊘ 0 <1	28 <100	<5 	♦	<0.2 <0.2	<10 <7	<2 48	71 <20
<400 <100	2 <1 2.7	70 60 57	<0.5 <1 <2	5 <1 <1.1	\$ \$ 4	<3 <20 <6	<10 <20 10	 <20 <10	3 <20 	<10 <5 6.5	1 <5 <7	<0.2 <0.2	<10 <10 <11	<1 <2 <5	3 <20 <7

Table 9.--Chemical analyses of

Location	Date of sample	Temper- ature, field (°C)	Spe- cific con- duct- ance, field (µS/cm)	pH, field	Report- ing- agency	Alka- linity, lab (mg/L as CaCO ₃)	Bi- carbo- nate (mg/L)	Carbo- nate (mg/L)	Cal- cium, dis- solved (mg/L as Ca)	dis- solved (mg/L	Sodium, dis- solved s (mg/L (mg/L	(mg/L	Sul- fate, dis- solved (mg/L s SO ₄)
PS-DR-1 (D-2-4)3cdd	09-02-87	15.0	1,610	6.6	USGS State EPA	96 		 	240 250 263	34 35 35.5	31 53 55.9	4.8 5 5.98	150 150	560 550
	12-02-87	10.0	1,570	6.4	USGS State EPA	104 104 	128		240 208	_ 32 28.5	 51 44.2	4.6 4 4.48	160 156 	520 500
	02-22-88	8.0	1,470	6.5	USGS State EPA	114 114 	 	 	200 210 197	30 30 28.7	64 73 66.3	4.3 4 4	190 190 	410 400
	04-13-88	8.0	1,500	6.4	USGS State EPA	91 91 80	111	0	240 250 215	34 33 32.6	41 52 47.3	4.5 4 3.4	170 172.5 197	520 510 522
PS-DR-2 (D-2-4)3cdd	09-02-87	16.0	1,070	6.8	USGS State EPA	94 	 	 	150 150 159	39 39 39.5	15 14 14.6	2.2 2 2.07	39 40.0 	330 330
	12-02-87	8.5	1,530	6.8	USGS State EPA	313 	382 	0	240 226	47 47.4	44 43.3	3 2 .9 4	172 	270

Alum- inum, dis- solved (µg/L as Al)	Arsenic, dis- solved (µg/L as As)	Barium, dis- solved (µg/L as Ba)	Beryl- ium, dis- solved (µg/L) as Be)	Cad- mium, dis- solved (µg/L as Cd)	Chro- mium, dis- solved (µg/L as Cr)	Cobalt, dis- solved (µg/L as Co)	Copper dis- solved (µg/L as Cu)	, Cyan- ide, Total (µg/L as Cn)	Iron, dis- solved (µg/L as Fe)	Lead, dis- solved (µg/L as Pb)	Manga- nese, dis- solved (µg/L as Mn)	Mercury, dis- solved (µg/L as Hg)	, Nickel, dis- solved (µg/L as Ni)	Silver, dis- solved (µg/L as Ag)	Zinc, dis- solved (µg/L as Zn)
<400 <100	1 13.5 7.59	33 25 40	<0.5 1 <4	18 32 18.6	<5 <30 <9	<3 <20 <7	<10 <20 18.5	 <20 <10	740 860 750	<10 <5 <2	1,000 980 1,050	 <0.2 <0.2	<10 <6	<1 <2 <7	3,600 3,500 3,980
 <400 94	5 5.5 3.9	21 20	 <1 <2	 15 27	- <5 <10	 ∕20 ∕25	 20 8	~~ <20 <10	290 301	 <5 7	630 574	<0.2 0.2	10 <22	<2 <6	2,700 2,460
 <200 <100	7 7 5.2	27 22 <45	<0.5 <1 4	11 8 24	ধ ধ	<3 <20 <9	<10 <20 16	<20 <1	470 480 491	<10 <5 11	890 840 875	<0.2 0.3	<10 <10 <7	<1 <2 <8	2,000 1,900 2,050
 <400 <100	2 <1 <2	27 18 16	<0.5 <1 <2	19 19 12	∜ ∜ 5	<3 <20 <6	<10 <20 19	 <20 <10	120 120 287	<10 <5 4.4	560 530 531	<0.2 <0.2	<10 <10 <11	<1 <2 <5	3,000 2,800 2,860
 <400 <100	10 4.5 <6	56 50 49.9	<0.5 2 <4	1 <4	<5 <30 ≪9	<3 <20 <7	<10 <20 17.5	<20	1,800 1,860	<10 <5 <2	560 560 575	 ≪0.2 ≪0.2	<10 <6	<2 <2 8.7	130 450 116
<400 90	7.5 7.8	69 81	<1 <2	1 1.5	<5 <10	₹ 0 ₹ 5	< 20 ⋖ 8		6,100 6,510	<5 5.1	2,000 2,190	<0.2 0.2	<10 <22	<2 <6	240 245

Table 10.—Chemical analyses of total recoverable metals from tailings [Constituents in parts per million; USGS, U.S. Geological Survey; State, Utah Department of Health; >, greater than]

,					
Location: Tailings	PS-MW	- 3	PS-MW-5	PS-	MW- 5
Interval:	1.0-2.0	ft	1.0-1.5 ft	4.5-5	.5 ft
	State		State	S	tate
Arsenic	380		410		480
Barium	210		94		57
Cadmium	190		83		88
Chromium	57		36		31
Copper	710		680		570
Iron	22,000		20,000		000
Lead	13,000		6,800		300
Manganese	2,000		2,100		400
Mercury	3.	7	4.5		4.3
Silver	67		52		57
Zinc	23,000		16,000	17,	000
					
Location: Tailings	PS	MW 5	PS-MW-5	P	S-MW-9
Interval:	5.5~	7.0 ft	7.5-9.0 ft	1.5-	2.0 ft
	USGS	State	State	USGS	State
Arsenic	470	380	400	390	460
Barium	290	59	120	300	14
Cadmium	77	92	82	60	220
Chromium	53	32	33	55	35
Copper	840	540	660	9	490
Iron		22,000	16,000	32,000	>72,000
Lead	9,400	7,000	7,700	6,700	8,500
Manganese	2,300	1,900	2,100	2,100	2,000
Mercury	13	2.3	3.8	_	0.8
Silver	68	59	55	50	59
Zinc	18,000	15,000	15,000	13,000	31,000
		····			

Table 10.—Chemical analyses of total recoverable metals from tailings—Continued

Location: Tailings	1	PS-MW-9	PS-MW-9						
Interval:	2.	4-3.0 ft	3.0-	-4.0 ft					
	USGS	State	USGS	State					
Arsenic	500	530	450	430					
Barium	39	18	27	66					
Cadmium	110	130	180	77					
Chromium	42	29	39	33					
Copper	23	730	29	630					
Iron	100,000	>76,000	120,000	34,000					
Lead	8,700	9,400	9,800	8,300					
Manganese	2,100	1,800	1,900	1,900					
Mercury	·	3.0	´ _	4.5					
Silver	55	53	65	50					
Zinc	23,000	19,000	34,000	13,000					

TABLE 11 STATISTICAL EVALUATION ROUND I - ARSENIC ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADI	ENT WELLS			<u>USGS</u>
	USGS	State	EPA	Detection Limit Used as Such
MWTS	<1	<1.1	<6	$T^* = 1.000$
MW1 D	<1	<1.1	<6	Tc = 1.86
MW12	<1	<1.12	<6	Not Significant
DOWNGRA	DIENT WEL	LS		Detection Limit = 1/2
	USGS	State	EPA	$T^* = 1.000$
MW2	<1	<1.1	<6	Tc = 1.86
MW3	<1	<1.1	<6	Not Significant
MW4	<1	<1.1	<6	· ·
MW5	<1	1.2	<6	STATE
MW6	<1	<1.2	<6	Detection Limit Used as Such
MW7	<1	<1.5	<6	T* = 1.1966
MW8	<1	<1.1	<6	Tc = 1.8601
MW9	5	6.5	<6	Not Significant
MW11	<1	1.5	<6	· ·
				Detection Limit = $1/2$
				T* = 1.3289
				Tc = 1.8600
				Not Significant

<u>EPA</u>

Detection Limit Used as Such No Data Variability - Not Significant

Detection Limit = 1/2 No Data Variability

ROUND I - CADMIUM ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADIENT WELLS				USGS
	USGS	State	EPA	Detection Limit Used as Such
MW1S	<1	<]	<4	$T^* = 2.1838$
MW1D	<1	*19	<4	Tc = 1.8600
MW12	<1	1	<4	Significant
DOWNGRADI	ENT WELL	S		Detection Limit = 1/2
	USGS	State	EPA	T* = 2.2521
MW2	<1	1	<4	Tc = 1.8600
MW3	<1	<]	<4	Significant
MW4	5	6	6.4	-
MW5	6	*39	7.1	STATE
MW6	6	*355	5.9	Not Enough Data to Do the
MW7	8	15	8.1	Statistical Calculations
MW8	20	29	17.9	
MW9	<1	<1	<4	<u>EPA</u>
MWT1	<1	3	<4	Detection Limit Used as Such
				$T^* = 1.9093$
				Tc = 1.8600
				Significant
	•			Detection Limit = 1/2
				T* = 2.2957
				Tc = 1.8600
				Significant

ROUND I - CHROMIUM ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADI	ENT WELLS	5		<u>USGS</u>
	USGS	State	EPA	Detection Limit Used as Such
MWIS	<5	<30	<9	No Data Variability
MW1D	<5	<30	<9	Not significant
MW12	<5	<30	<9	•
DOWNGRA	DIENT WEL	.LS		Detection Limit = 1/2
	USGS	State	EPA	No Data Variability
MW2	<5	<30	<9	Not significant
MW3	<5	<30	<9	•
MW4	<5	<30	<9	
MW5	<5	<30	<9	STATE
MW6	<5	<30	<9	Detection Limit Used as Such
MW7	<5	<30	<9	No Data Variability
MW8	<5	<30	<9	Not significant
MW9	<5	<30	<9	
MW11	<5	<30	<9	
				Detection Limit = 1/2
				No Data Variability

No Data Variability Not significant

<u>EPA</u>
Detection Limit Used as Such
No Data Variability
Not significant

Detection Limit = 1/2 No Data Variability Not significant

ROUND I - MANGANESE ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADIE	NT WELLS			USGS
	USGS	State	EPA	All Values Above Detection Limit
MW1S	110	94	99.1	T* = 1.0211
MW1 D	460	430	434	Tc = 2.3977
MW12	39	43	39.4	Not Significant
DOWNGRAD	IENT WELI	_S		
	USGS	State	EPA	<u>STATE</u>
MW2	110	110	79.7	All Values Above Detection Limit
MW3	6	8	8.8	T* = 1.1618
MW4	300	300	317	Tc = 2.2848
MW5	120	120	126	Not Significant
MW6	440	440	456	
MW7	250	240	248	
MW8	430	420	441	E <u>PA</u>
MW9	1300	1500	1400	All Values Above Detection Limit
MW1 1	550	570	577	T* = 1.1585
				Tc = 2.3236
				Not Significant

ROUND I - ZINC ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADIE				<u>USGS</u>
	USGS	State	EPA	All Values Above Detection Limit
MW1S	19	25	22.5	$T^* = 2.870$
MW1 D	12	19	<7	Tc = 1.8604
MW12	38	40	<7	Significant
DUMNEDAD	IENT WELL	C		
DOMINGINAD	USGS	State	EPA	STATE
MW2	30	26	<7	Detection Limit Used as Such
MW3	6	<15	<7	T* = 2.8766
MW4	1800	1700	1940	Tc = 1.8603
MW5	2300	2100	2460	Significant
MW6	1100	1100	1210	Significant
				Detection Limit 1/2
MW7	2000	2000	2200	Detection Limit = 1/2
MW8	2900	2800	3210	$T^* = 2.8673$
MW9	10	<15	7.7	Tc = 1.8603
MW11	13	18	9.9	Significant
				<u>E PA</u>
				Detection Limit Used As Such
				T* = 2.8774
	•			Tc = 1.8602
				Significant
				Detection timit 1/2
				Detection Limit = 1/2
				$T^* = 2.8790$
				Tc = 1.8602
				Significant

ROUND II - ARSENIC ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADI	ENT WELLS			USGS
	USGS	State	EPA	Not Enough Data
MWIS	N/A	<1.1	<2	
MW1D	N/A	<1.1	<2	
MW12	N/A	25	<2	
DOWNGRAI	DIENT WEL	LS		
	USGS	State	EPA	STATE
MW2	N/A	<1.1	<2	Detection Limit Used as Such
MW3	N/A	1.1	<2	T* = 0.9442
MW4	N/A	<1.1	<2	Tc = 2.9169
MW5	1	<1.1	<2	Not Significant
MW6	1	<1.1	<2	•
MW7	2	<1.1	2.1	Detection Limit = 1/2
MW8	1	<1.1	3.8	T* = 0.9302
MW9	5	5	3.4	Tc = 2.9162
MW]]	N/A	<1.1	<2	Not Significant
				FDA

Detection Limit Used As Such
T* = 1.5556
Tc = 1.8600
Not Significant

Detection Limit = 1/2 T* = 1.8418 Tc = 1.8600 Not Significant

ROUND II - CADMIUM ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADIE	NT WELLS	,)		USGS
	USGS	State	EPA	Not Enough Data
MWTS	N/A	*175	0.7	
MW1D	N/A	*75	1.3	
MW12	N/A	4	0.2	
DOWNGRAD	IENT WEL	LS		
	USGS	State	EPA	<u>STATE</u>
MW2	N/A	*80	0.4	Not Enough Data
MW3	N/A	*35	0.2	
MW4	N/A	3	3.2	
MW5	3	*35	3.1	
MW6	7	*355	5.8	<u>EPA</u>
MW7	8	8	9.8	All Values Above Detection Limit
MW8	15	12	16	$T^* = 2.0099$
MW9	<1	<5	0.2	Tc = 1.8922
MW1 1	N/A	<1	0.9	Significant

ROUND II - CHROMIUM ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADIE	NT WELLS		USGS	
	USGS	State	EPA	Not Enough Data
MWTS	N/A	<5	<10	•
MW1D	N/A	<5	<10	
MW12	N/A	<5	<10	
DOWNGRAD	IENT WEL	LS		
	USGS	State	EPA	STATE
MW2	N/A	<5	<10	No Data Variability
MW3	N/A	<5	<10	Not Significant
MW4	N/A	<5	<10	-
MW5	<5	<5	<10	
MW6	<5	<5	<10	
MW7	<5	<5	<10	
MW8	<5	<5	15	EPA
MW9	<5	<5	<10	No Data Variability
MW11	N/A	<5	<10	Not Significant

ROUND II - MANGANESE ALL CONCENTRATIONS ARE EXPRESSED AS Ug/l

UPGRADII	ENT WELLS			USGS
	USGS	State	EPA	Not Enough Data
MWIS	N/A	90	99	· ·
MW1 D	N/A	75	80	
MW12	N/A	8	8	
DOWNGRA	DIENT WELL	LS		
	USGS	State	EPA	STATE
MW2	N/A	30	20	All Values Above Detection Limits
MW3	N/A	6	5	T* = 2.0450
MW4	N/A	1800	2250	Tc = 1.8736
MW5	260	260	276	Significant
MW6	270	280	287	·
MW7	59	68	70	
MW8	430	430	472	EPA
MW9	1300	1500	1400	All Values Above Detection Limit
MW11	N/A	240	320	T* = 1.9788
				Tc = 1.8725
				Significant

ROUND II - ZINC ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADIE	ENT WELLS			<u>USGS</u>
	USGS	State	EPA	Not Enough Data
MWTS	N/A	69	71	
MW1 D	N/A	<20	85	
MW12	N/A	<20	17	
DOWNGRAD	DIENT WEL	LS		
	USGS	State	EPA	<u>STATE</u>
MW2	N/A	41	22	Detection Limit Used as Such
MW3	N/A	20	16	$T^* = 2.4806$
MW4	N/A	640	759	Tc = 1.8623
MW5	880	930	899	Significant
MW6	1200	1400	1300	
MW7	2100	2400	2150	Detection Limit = 1/2
MW8	2600	2700	2890	$T^* = 2.4814$
MW9	7	<20	16	Tc = 1.8633
MWT1	N/A	<20	31	Significant

EPA
All Values Above Detection Limit
T* = 2.4009
Tc = 1.8637
Significant

ROUND III

Not Enough Data to Do Statistical Evaluation. One Background Well (MW1S) Was Not Sampled.

Round III - Arsenic All Concentrations are expressed as Ug/l

UPGRADIENT WELLS

	USGS	STATE	EPA	STATISCAL EVALUATION WAS NOT DONE DUE TO INSUFFICIENT DATE
MW1 S	N/A	N/A	N/A	
MW1 D	N/A	<1	<3	
MW1 2	N/A	2	<3	
DOWNGRAD)IENT WEL	LS		
MW2 MW3 MW4 MW5 MW5D MW6 MW7 MW7D MW8	N/A N/A N/A <1 <1 2 <1 2	< < < < < < <	<3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <	
MW9	N/A	2	<3	
MW11	N/A	<1	<3	
MW11D	2	<1	<3	

Round III - Cadmium All Concentrations are expressed as Ug/l

UPGRADIENT WELLS

•	USGS	STATE	EPA	STATISCAL EVALUATION WAS NOT
MWIS	N/A	N/A	N/A	DONE DUE TO INSUFFICIENT DATA
MW1D	N/A	<1	<0.5	
MW12	N/A	1	<0.5	
DOWNGRAI	DIENT WEL	LS		
MW2	N/A	<1	1	
MW3	N/A	<1	<0.5	
MW4	N/A	2	0.5	
MW5	3	<1	0.5	
MWD	2	<1	0.5	
MWG	7	6	5.4	
MW7	9	8	24	
MW7D	2	< }	<0.5	
MW8	<5	14	45	
MW9	N/A	<1	*28	
MWT1	N/A	<1	1.2	
MW11D	<5	<1	1.5	

ROUND III - Chromium All Concentrations are Expressed as Ug/l

UPGRADIENT WELLS

MW1S MW1D MW12	USGS N/A N/A N/A	STATE N/A <5 <5	EPA N/A <9 <9	STATISTICAL EVALUATION WAS NOT DONE DUE TO INSUFFICIENT DATA
DOWNGRAD	TENI MET	F2		
MW2 MW3	N/A N/A	<5 <5	<9 <9	
MW4	N/A	<5	<9	
MW5	<5	<5	<9	
MW5D	<5	<5	<9	
MW6	<5	<5	<9	
MW7	<5	<5	<9	
MW7 D	<5	<5	<9	
MW8	<5	14	<9	
MW9	N/A	<5	<9	
MW11	N/A	<5	<9	
MWIID	<5	<5	<9	

Round III - Manganese All Concentrations are Expressed as Ug/l

UPGRADIENT WELLS

MW1 S MW1 D MW1 2	USGS N/A N/A N/A	STATE N/A 16 <5	EPA N/A 14 <8	STATISTICAL EVALUATION WAS NOT DONE DUE TO INSUFFICIENT DATA
DOWNGRAD	DIENT WEL	LS		
MW2	N/A	64	80	
MW3	N/A	7	>8	
MW4	N/A	2700	2750	
MW5	120	120	487	
MW5D	500	470	107	
MW6	82	85	80	
MW7	24	32	29	
MW7D	170	160	162	
MW8	110	110	114	
MW9	N/A	850	889	
MW11	N/A	140	141	
MW11D	500	480	482	

Round III - Zinc
All COncentrations are Expressed as Ug/l

UPGRADIENT WELLS

•	USGS	STATE	EPA	STATISICAL EVALUATION WAS NOT
MWTS	N/A	N/A	N/A	DONE DUE TO INSUFFICIENT DATA
MWID	N/A	44	<20	DONE DOE TO INSULTEDING DATA
MW12	N/A	71	<20	
DOWNGRAD	IENT WEL	.LS		
MW2	N/A	89	20	
MW3	N/A	52	<20	
MW4	N/A	400	361	
MW5	71	97	<20	
MW5D	19	59	74	
MW6	1100	1100	1060	
MW7	2100	2100	2180	
MW7D	6	42	<20	
MW8	2100	2100	2160	
MW9	N/A	51	<20	
MW11	N/A	47	<21	
MW11D	6	39	<20	

ROUND IV - ARSENIC ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADI	ENT WELLS	;		USGS
	USGS	State	EPA	Not Enough Data
MW1S	N/A	<1	<2	
MW1D	1	1.5	<2	
MW12	2	1	2.7	
DOWNGRA	DIENT WEL	.LS		
	USGS	State	EPA	STATE
MW2	2	<1	<2	Detection Limit Used as Such
MW3	<1	<1.1	<2	T* = 0.1629
MW4	<1	<1.1	<2	Tc = 2.5417
MW5	<1	<1.1	<2	Not Significant
MW5D	2	<1.1	<2	-
MW6	<1	<1.1	<2	
MW7	2	<1.1	<2	Detection Limit = 1/2
MW7D	3	<1.1	<2	
MW8	<1	<1.1	<2	T* = 0.8919
MW9	4	2.5	2.4	Tc = 2.6474
MW11	<1	<1	<2	Not Significant
MW11D	2	<1	2.6	•

Detection Limit Used as Such T* = 0.7952 Tc = 2.8829 Not Significant

Detection Limit = 1/2 T* = 0.6996 Tc = 2.8457 Not Significant

ROUND IV - CADMIUM ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADI	PGRADIENT WELLS			USGS
	USGS	State	EPA	Not Enough Data
MWIS	N/A	<1	<1.1	· ·
MWID	<3	<1	<1.1	
MW12	5	<1	<1.1	
DOWNGRA	DIENT WEL	LS		
	USGS	State	EPA	STATE
MW2	3	<1	<1.1	Detection Limit Used as Such
MW3	<1	<1	<1.1	T* = 1.6137
MW4	9	8	<5.5	Tc = 1.8120
MW5	2	* 50	3.6	Not Significant
MW5D	<1	<1	<1.1	•
MW6	8	8	<5.5	
MW7	7	<1	<5.5	Detection Limit = 1/2
MW7D	3	<1	<1.1	
MW8	22	22	20	T* = 1.6340
MW9	2	<1	<1.1	Tc = 1.8120
MW11	<1	<1	<1.1	Not Significant
MW11D	<1	<1	<1.1	•

Detection Limit Used as Such T* = 1.8467
Tc = 1.7960
Significant

Detection Limit = 1/2 T* = 1.5301 Tc = 1.7960 Not Significant

ROUND IV - CHROMIUM ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADIE	NT WELLS			USGS
	USGS	State	EPA	Not Enough Data
MWIS	N/A	<5	<4	· ·
MW1 D	<5	<5	<4	
MW12	<5	<5	<4	
DOWNGRAD	IENT WEL	LS.		
	USGS	State	EPA	STATE
MW2	<5	<5	<4	No Data Variability
MW3	<5	<5	4.5	Not Significant
MW4	<5	<5	<4	-
MW5	<5	<5	5.2	
MW5D	<5	<5	<4	
MW6	<5	<5	5.1	
MW7	<5	<5	<4	
MW7D	<5	<5	<4	
MW8	<5	<5	<4	EPA
MW9	<5	<5	<4	No Data Variability
MW11	<5	<5	<4	Not Significant
MWTTD	<5	<5	<4	-

ROUND IV - MANGANESE ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADI	ENT WELLS			USGS
	USGS	State	EPA	Not Enough Data
MW1S	N/A	22	28	G
MW1D	9	12	14	
MW12	1	<5	<7	
DOWNGRA	DIENT WEL	LS		
	USGS	State	EPA	STATE
MW2	3	<5	7.3	Detection Limit Used as Such
MW3	13	13	7.8	T* = 1.9624
MW4	46	46	44	Tc = 1.7994
MW5	2	44	47	Significant
MW5D	88	86	82	•
MW6	* 5	57	63	
MW7	7	11	14	Detection Limit = 1/2
MW7D	430	420	383	
MW8	130	120	115	T* = 1.9676
MW9	1200	1100	1100	Tc = 1.8004
MW11	130	120	118	Significant
MWT1D	260	250	244	.

Detection Limit Used as Such T* = 1.8950
Tc = 1.8014
Significant

Detection Limit = 1/2
T* = 1.9066
Tc = 1.8031
Significant

ROUND IV - ZINC ALL CONCENTRATIONS ARE EXPRESSED AS Ug/1

UPGRADIE	PGRADIENT WELLS			USGS
	USGS	State	EPA	Not Enough Data
MWIS	N/A	<20	14	
MW1D	5	20	48	
MW12	3	<20	<7	
DOWNGRAD	IENT WEL	LS		
	USGS	State	EPA	STATE
MW2	3	<20	<7	Detection Limit Used as Such
MW3	12	26	9.1	T* = 2.7090
MW4	2300	2400	2290	Tc = 1.7960
MW5	*3	1900	1780	Significant
MW5D	6	<20	8.8	
MW6	1500	1600	1540	
MW7	2100	2100	2030	Detection Limit = 1/2
MW7D	3	<20	8.1	
MW8	3000	2900	2780	T* = 2.2666
MW9	6	<20	16	Tc = 1.7961
MW11	11	<20	38	Significant
MW11D	3	<20	13	-

Detection Limit Used as Such $T^* = 2.6759$ Tc = 1.7978 Significant

Detection Limit = 1/2 T* = 2.6778 Tc = 1.7980 Significant

N/A = No sample was collected for analysis.

BSHW/5169z/1-21

ATTACHMENT A DRILLING REPORT

DRILLING ACTIVITIES REPORT FOR PROSPECTOR SQUARE, PARK CITY, UTAH

The Silver Creek Tailings/Prospector Square site is located within the city limits of Park City approximately 30 miles east of Salt Lake City. The site is currently being investigated by the state of Utah and EPA through a memorandum of agreement (Appendix B). The USGS Water Resources Branch and Ecology and Environment Inc. Field Investigation Team were requested by the two principle investigators to conduct a drilling and well installation program at the site. The USGS was requested by the state of Utah to oversee well installation at the Silver Creek site, while E&E was requested to subcontract the drilling and to supervise the drilling program.

There were three phases of the drilling conducted at Prospector Square, Park City, Utah. The first phase was conducted during July 15-23, 1987. The second phase was conducted during July 27-August 5, 1987 and the third phase was conducted during August 13-21, 1987. The drilling was subcontracted to the Earth Data Acquisition Group (EDAG) of Denver, Colorado under TDD FO8-8611-34D.

FIT arrived onsite July 15, 1987 at 8:00 a.m. and met with Jim Mason, United States Geological Survey (USGS) and Alton Schoonmaker of EDAG, topics of discussion were the site safety plan and proposed drilling schedule. The site safety meeting was conducted, all participants signed the release form and drilling began on PS-MW-16 at 10:30 a.m. EDAG was equipped with a CME-75 hollow stem auger rig (HSA) with a downhole hammer. Prior to commencing drilling, the USGS, in conjunction with Park City representatives had utilities checked and received final permission from Park City Engineer, Ron Ivie to drill and install wells on city property.

A. SHALLOW ALLUVIAL MONITORING WELLS

Eleven shallow monitoring wells were installed at various locations in the Prospector Square area (Figure 1). Selection of the well locations were based on professional judgment of the USGS Hydrology Branch, Salt Lake City, Utah. A summary of shallow alluvial well logs and completions is presented in Appendix A.

The objectives of installing the shallow alluvial wells were:

- o To define water table elevations, aquifer permeabilities, gradients and flow directions.
- o To document lateral and vertical extent of contamination.
- o To provide geological information on the subsurface conditions.

Installation of 11 shallow monitoring wells occurred during the three drilling periods. The following is the breakdown, including the date and type of drilling and the number of wells installed.

DATE	TYPE OF DRILLING	WELLS INSTALLED
7/15-7/23/87	Hollow stem auger (HSA)	PS-MW-1s, PS-MW-2,
	•	PS-MW-4, PS-MW-6,
		PS-MW-5s, PS-MW-7 (6)
7/27-8/24/87	HSA	PS-MW-3, PS-MW-9, PS-MW-5
		PS-MW-10, PS-MW-1D (5)
8/13-8/21/87	HSA w/casing advancer	PS-MW-2D, PS-MW-11 (2)
		Boreholes
		PS-BH-001, PS-BH-002 (2)

A CME 75 hollow stem auger drilling rig was used to drill the above mentioned boreholes. The boreholes were advanced with a 7 5/8" hollow stem auger, with split spoon samples taken at 5.0' intervals unless field conditions warranted otherwise. Samples of the unconsolidated sediments were obtained using a 2', 18" or 24" split spoon barrel. Geologic descriptions of

the samples were made immediately at the time of collection and a detailed geologic log was prepared. Logs are provided in Appendix A.

If a sample was collected for analysis, the sample was composited in a stainless steel bucket, the sample was placed in an 8 ounce glass jar with a teflon lined lid. The sample was labeled with the appropriate sample tag including the samples name, the date, TDD #, well number and depth. The lid was taped, the sample placed in a plastic sample bag, then placed in appropriate sample containers under chain of custody.

Drill spoils produced during the drilling program were containerized in 55 gallon drums and stored at the Summit County Landfill with permission from Ron Ivie. Spoils were containerized from all boreholes. Screening samples were collected and analyzed by the state lab for metals and E.P. toxicity.

B. DEEP ALLUVIAL WELLS

Two deep alluvial wells were installed upgradient of Prospector Square. Well locations were based on locations outlined in the USGS project proposal for Prospector Square. A summary of deep alluvial well logs and completions are presented in Appendix A.

The objectives of installing the deep alluvial wells were:

- o To determine baseline water quality in the deep alluvium upgradient of Prospector Square.
- o To provide geologic information of the alluvium beneath the shallow aquifer and wells.
- o To determine the hydraulic gradient between the deep and shallow alluvium.

C. TAILINGS DRILLING

In addition to shallow alluvial wells, two shallow boreholes were drilled to the base of the tailings (PS-BH-001 and PS-BH-002). The locations of the boreholes were chosen to assist in deteriming the horizontal and vertical distribution of tailings in the Prospector Square area in partial fulfillment of SARA, Section 125. The 2 shallow holes were drilled to depths of 9.6' and 8.0' respectively. The borings were drilled down to native material. The boreholes were backfilled with a mixture of native material and bentonite. Borehole logs are contained in Appendix A.

D. WELL COMPLETION

Wells were constructed of 2" inside diameter Schedule 80 PVC casing with either 10 or 20 slot screen. Shallow wells were drilled approximately 15' into the water table and a five foot section of screen was set five feet above the bottom of the well. A five-foot silt trap was installed below the screen. The annular space around the screens were backfilled with 10/20 Colorado silica sand to five feet above the screen. A minimum 2 foot bentonite seal was emplaced on the sand and hydrated. The placement of this seal was to prevent any downward migration of surface water. The annular space around the well casing was grouted with cement and 4% bentonite slurry to within 4 feet of the surface. A four feet locking steel surface casing was placed in the hole, and a neat cement surface seal was then emplaced. The casing was set flush with the ground surface.

Deep alluvial wells were installed and completed in the same manner as shallow alluvial wells except for the following procedures:

- o 1 ten foot section of 20 slot screen was set at total depth without the use of a silt trap below the screen.
- o Setting of the bentonite and cement seals was accomplished via a 1" tremie line.

E. WELL DEVELOPMENT

The wells were developed by use of a Brainard-Killman pitcher pump. All wells were pumped until temperature, pH, specific conductance and flow rate were constant. Several (3-7) casing volumes of water were evacuated before chemical equilibria was obtained. All development water was containerized and stored at the county landfill pending analysis for hazardous waste characterization.

F. DECONTAMINATION

Upon completion and development of each well, equipment used in the drilling process in as steam cleaned and rinsed with water. The steam cleaning was accomplished by using a Hotsry Steam cleaner with a soap and water mixture. The equipment was rinsed with clean water to remove any soap residue.

G. WELL SURVEYING

At the direction of E&E, all wells and borings were surveyed to an existing benchmark for horizontal and vertical control by J.J. Johnson and Associates of Park City, Utah. Table 1 contains these data. Water level measurements were recorded subsequent to this survey by the USGS. The USGS will develop a potentiometric map showing ground water flow direction.

PROJECT Frospector Square	TOO NO. <u>708 - 3611 - 340</u>	DATE 3-1-37
WELL/BORING PS- HIW ID	LOCATION KERINS OF Hom For Blod.	LOGGER H Ferency
DRILL METHOD HSA-Split Grown Brials	Pash lit, UT	PAGE OF
WATER LEVEL FIRST ENCOUNTERED 37.2	FINAL 33 25	ELEV. 6791. 87

EPTH IN EET	LITH COL	SAMPLE TYPE IDENT.	MDISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
10 - 20 - 30 -	00100100		in hal		Upple 45 was similar to the PE-MW-1A, which was logged with 9 Epl grown Drikes.
40- 50- 60- 10-	1. pla : p: 1. p: 1. b:	الــا	Final	Soud, fine to wante growthy, fine to wante will scattered cobbles, it daying demse; wett more possely at 54,64-65,66-67' Clay wow to med ploobers, soud-silt, fine to wasse grained of growthy to scattered growel with cobbles my stiff, mish to wet, brown	Eurovary. 80 -82 = 100 % Es = 30-40 Luovary. 80 -82 = 100 % Es = 30-6-9-10
ico -	TDD	F5.5 '		Shole redd. Le brown findle, (Wood Side Stade); modernisch rand from \$5.0', moist	Durrery: 65 - 85.5'=10075 55 = 160/pm 3°, 230/3"

		_		LOCATION PACIFIC Br		
				Sacci Drives		PAGE L OF L
WATER LEVEL FIRST ENCOUNTERED 31.0						ELEV. 6758.44
<u> </u>			MOISTURE			
DEPTH IN FEET	CBF	SAMPLE TYPE IDENT.	CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION		NOTES
	201			Grevel, Sine-course sandy evay	95% recov	٠٠٧
10-	010101010	<u> </u>	·	medium dense moist with clay lenver cobbles to Gil	20% CSC	cnech
20-	0 00 1			Clay - Orown-red low-medium	HOTO Rece	·-~
30-			Inidual V First	Plasticity, sandy-silt very fine-fine sand small amount grouzl well sorted small amt silt	Drive 160 70 Rzcov	cry
40-	+11171				Drive 50% Reco.	اندام

PROJECT TOSPECTOR Square	TOD NO	708-8611-34D	DATE	8/20	-21/8	57
WELL/BORING PS- HW- 20		west of Corner Shop	LOGGE	1 //.	Peccn	4
DRILL METHOD HSA, AIR ZOTARY		Park City, UT	PAGE		OF	<i></i>
WATER LEVEL FIRST ENCOUNTERED 33.0	FINAL	30.0	ELEV.			

_ 				 	
DEPTH IN FEET	LITH	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
25 30- 40	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HSA cuttings	F.nal <u>V</u> Initial 22-21	F.11 Grovel, savdy, Line to coanse dense, dry, gray (GH) Grovel Line to wanse, saudy, Line to wanse, dense, moist, brown, with cobbles (roundly to subangular) (GP) St. clarge to clayer at 20, 25-40 to grovely, way 40-54 (GC)	Some fine grained with sand, gr tailings maderial district at the vicinity of the boung love receiving 350-36-5'=100%
90 - 71- 720 - 720 -	500 000 000 000 0000 0000 00000 00000000	HS A SS ALL POR	100-200 }-\ 	Clay, sandy the to conse, stiff, moist bearin, sea hered grould up to couble sile (CL) Clay, sandy, go willy fine to coarse. Shiff, moist, blown (CL) Ground, sand, Line to coarse, clayer, dense in moist, blown (rounded to subangular grould with cobbles) (GC)	Core recording 90.0'-91.0=80% Bouncing Stort Any return at 93.0 SPICP) Water disclored de 110' 0.8 gal/min. 115' 1821/min. 117' 1821/min.
	<u> </u>			gained ion handres west, block	Potony Sampling at 5'internal

PROJECT Prospector square	JOB NO. FOE 2611-340	DATE 7-28-87
WELL/BORING PS- MW-3	LOCATION Highway 224 Gast ct	LOGGER K. MGCL
DRILL METHOD HSA SONT Spoons	• •	
WATER LEVEL FIRST ENCOUNTERED 32.95	FINAL _2).97	ELEV. 6743.35

DEPTH IN FEET	LITH COL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
33	11 101 11 101 11 100 00 101 101 101 200		Industrial E	Fill, sund Jeilen will screed synd limonite staining Fill City Dark Drown low plasticity in pobbics 1 gravel Fill city - Rock-medium plasticity w publics 1 gravel anywar Clay - Red medium plasticity w very fine grained Sand 1 pabbles rounded - angular Gravel fine - course, angular- Judicendal poerly sorted Moist Clay - Brown medium - high plasticity, small amt Pabbles Gravel - as above TD 36.06	100% recesery

PROJECT Prospector Suvere	JOB NO. FOS 8611-34 D	DATE	7-20-67
WELL/BORING PS. MW-4	LOCATION Prospector Square	LOGGER	K. MOLL
DRILL METHOD HSA SOLL Speen	@ silver Creek	PAGE	<u>i</u> 0F <u>i</u>
WATER LEVEL FIRST ENCOUNTERED 27.99	FINAL 39. 2	ELEV.	6773.42

DEPTH IN FEET	LITH CBL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
1	0.00			pill Aspacit Pitch Dint Dank Drown wiccopies SAND Tan Doigo medium course Will souted and nounded Gravel fine medium, sandy, clayer - medium piesticity	Drive 3.0' SAmores
ن, - -	000][with fine- medium sand over lenses throughout pebbles to 1/2" Clay - Red medium plasticity	Drive 100 70 receivery
- ∂°—	0000		. :	W-fine-medium sand Interbedded Quartz and K-Spar pebbles to 1/2" Gravel fine-coarse anyvier-supramula	prive 100% receivent
30-			Initial Pinal	Clay as above Gravel, sandy fine-coarse Moist NO Return	Drive 60% recovery
-	0 0	+		Jand Reddish - brown fine - medium roundect . Subneunded with Cubbic , Smail a meupa bo Betren Cky I consu	Drive 0% recovery
40-	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			Graver - fine - medium, poorly Sorted pubbles with Clay interbedded	Drive 80% received
-	О			TO 45.01	Drive 8070 receivery

PROJECT Prospector Square JOB NO. FOR EGII - 34 D DATE 7-20-87

WELL/BORING PS-MW-5 LOCATION SIDEWINDER & LOGGER K. MOUL

DRILL METHOD HSA SPILT SPOON Belle Stare PAGE i OF 1

WATER LEVEL FIRST ENCOUNTERED 33.5 FINAL 18.0 ELEV. 6741.04

DEPTH IN FEET	COF	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
7.5	8000		至内117 五人11	FILL brown dint sand Lt brown-tan, Medium-graine well sorteck, Subrounded Same as above grades to Coarser sand my gravel Tailings Gravel Cobbles to 3" 5 mail Subrounded-rounded ant Silt I clay Clay lens @ 12.7 Clay lens @ 12.7 Clay Pat. Red Highly plastic Sand 4 pebbles interbedded NO Return Gravel - cobbles to 4" rounded Ciay - Red- Brown fat Righly Plastic to interbedded Fine - very fine sand TD 3400'	6.6-8.5' Drive 10-12.0 60% recovery

PROJECT Prospector Square JOB NO. FOR 7611-3+D DATE 7-20-87

WELL/BORING PS-MW-6 LOCATION Doc Holiday & LOGGER K Mecc

DRILL METHOD HS A Split Specks Little Bessic Ave PAGE 1 OF 1

WATER LEVEL FIRST ENCOUNTERED 14.0' FINAL 13.0' ELEV. 6731.48

DEPTH IN FEET	LITH COL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
75				Dirt, dark brown, silty sundy Clay Gravel, sandy silt w/ COBbles rounded- Subrounded	30% recovery 8.6 4,6,11,25
-				Clay - red silty medium plasticity dry w Goodes Gravel - quartite * serpenting Chies sine - coarse rounded - subrounced good sorting, silty	B.C 6, 10, 15, 20
10				SAME AS above Clay- brown- red medium plasticity, moist @	
15 -			·	SANO - V.f.f, well rounded rounded rounded rounded rounded rounded rounded	Drive 14.0-16.0 6090 recovery
эo -		-		brown Glay Bravel - line - course, sand	
- 35				Subscunded 1/2 11-411 3070 return	
				TD 29.0'	

PROJECT Prospector Square	JOB NO. FOF 8611 - 34 0	DATE 7-20-27
WELL/BORING PS-MW-7	LOCATION BUCCASO BILL AVE	LOGGER K. MOLL
DRILL METHOD HSA (SPILL SPOORS		PAGE _ i OF _)
WATER LEVEL FIRST ENCOUNTERED	FINAL 12.0'	ELEV. 6722.46

}	EPTH IN EET	LITH COL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
	5-	X 1111110000000000000000000000000000000		五日 111 五日 11	Gravel Coarse-Fine sm amt Clay - low piasticity, brown pebbles w sandy silt Gravel Coarse-Fine sm amt Clay Cobbles wy atz Chips. Subrounded-revaded poorly sorted, 7572 atk minerals pmy Glay medium plasticity small amt silt. atz, ss chips cobbles to 4" Dubangular- Dounded poorly sorted Fine-inedium toirly well sorted pounded to subrounded predominately aftz predominately aftz Argh plastic clay Fat blue grey clay	G.L- 3.0' Continous
	-				TO 25.0	

PROJECT Prospection valuere		0 DATE 8-4-87
WELL/BORING PS-MW-8	LOCATION Comstock	-CUL BE SACLOGGER M. Decen
DRILL METHOD HSA 5PIT SPOORS		PAGE _ OF
WATER LEVEL FIRST ENCOUNTERED 36,6	FINAL	ELEV. 6751,41
DEPTH SAMPLE CONTENT TYPE WATER LEVEL LI	THOLOGIC DESCRIPTION	NOTES
- Sand are	welly fine - coans	5-8-3-4 Bows NOY recever
uith dense	cobbies, well serted . slightly moist gray	12-13-15-10 10090 Tollevery
-	subrounded, loose dark brown fine	4-5 100% receivery
10-10-1 1 4min.	d -coarge	
1	- coare, sandy with cobbins moist brown silt clayey plasticity, sarely fine	"
COS	the silly loose maint from	Drive - 100 70 recovery
	one-course clayey low assicity sithy mout dense	20-40-50/5
	rown with cobbies svery	
30 Sil+-claye	y, with gravel	Drive 100% recovery
	bangular-supreunded with sand lenses	
	rine - coarse	
	ne- coarse with cobbics	•
	se, silty, st clayer, moist	
30-00	subnounded	Drive 101% received
		33 - 5 0
7_0		
70.		
10 0 TO 41,0		

PROJECT Prospector Savare	JOB NO. FOT 7611-34 D	DATE 7-29-87
WELL/BORING PS - MIL-9	LOCATION City Park cost	LOGGER K. MOLL
DRILL METHOD HSA Split Spoons	of Prospector Square	PAGE 1 OF 1
WATER LEVEL FIRST ENCOUNTERED 12.0	FINAL	ELEV. 6707.90

DEPTH IN FEET	LITH COL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
5 —				Tailings Pyrite, Arsempyrite Minerali SAND Fine- Very Fine grained Well somed & rounded Clay-Dark brown organic Clay- Same as above	Drives 0-2.0° 24.0° 4.0.6.0° 100% recevery
10	10.00 100 0000		INITEL	Gravel - fine - coarse with cobbles, subrounded rounded, poorly sorted interpretated lenses of sandy clay	
15—	.60			Bedrack Shale Red friable parts at bedding planes slightly weathered TO 16.5	Drive 15.0-16.0 woodstoe shale 596-5"
1					

DRILL LOG

PROJECT Prospector square	JOB NO. FOR-7611-34 D	DATE 7-31-87
WELL/BORING PS - MW-10	LOCATION HIGHWAY 724 CAST	LOGGER K. MOLUM. Peccan
DRILL METHOD HSA SPILE SPOONS	of Park city	PAGEOF
WATER LEVEL FIRST ENCOUNTERED	FINAL 2.0'	ELEV.

	EPTH IN EET	LITH COL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
	-	<i>]]]]</i>			Sand fine-coarse, w gravel with silty sand lensa	Drive 3 0-40
	5 <u>-</u> -	0 0 0			Gravel . fine-coarse, suprounded poerly sorted	
,	0	ە دە دە دە دە دە			Gravel - fine - cease poorly somed Sub rounded BEDROCK - Shale Friebic, exealing	. Drive No Recovery
					parts casily@ building planes. Dark Recklish brown TD 13.0'	Drive 70/6 Ho lecevers
	-					
	-					

PROJECT POSSECTEN Equans	TOO NO. <u>FOE - 8611- 34 D</u>	DATE 5-13-57
WELL/BORING = - MM - 11	LOCATION Essisting 18th School	LOGGER M. POCENLI
DRILL METHOD USA - SOUT SWOOD BONNS	Pail GA, UT	PAGEOF
WATER LEVEL FIRST ENCOUNTERED 228	FINAL	ELEV.

	EPTH IN EET	LITH COL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
	2 4 6			∑final ∑Inidial	5:14 Saud Gonelly, wore, duy, group will cottles 5:14 Sine grained clayer, low plassiest, st. saud, med, cience dark buren to block, or gauic	
	8 10 12 14	.0.00			clay, highly plostic, st., saudy to so well, grand moist to well, grand soully, fine to warse will ictational cobblic, med deuse, moist toach, grang	ss = 9-15-17 (per 6"each) Lewreng 10.0-12.0 = 100/s
	18 -	100000000000000000000000000000000000000	20			SS = 9-10-12 (pm 6" sack) Escorery 20-22.0'=100/2
4	-					

PROJECT PROSPECTOR Equare.	TOD NO. FOS-EBII -34D	DATE 5-21-87
WELL/BORING 1 DS - 34 COI	LOCATION Pr. Square North	LOGGER H. FORONLY
DIVICE THE HIDD	Truk City UT	PAGEOF
WATER LEVEL FIRST ENCOUNTERED Drag	FINAL Dry	ELEY.

DEPTH IN FEET	LITH COL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
1 2 3 4 5 6 7 60 T	10 150 20 10 10 10 10 10 10 10 10 10 10 10 10 10	TYPE	WATER LEVEL	TOPSOIL FILL - Sandy growlifing to coonse toose, dry berry, organic, fill - Sandy Gine to loarse, silty the clayly, loose to med. Hense moist, chell busin, organic to L. organic (SP/SH) FIN - Sand-Growl, fine to coarse with exhibit loose to med. dense, imajet dark brown Some grovel with iron staining altered (in procured mine tailings?) (SP/GP) Clay, highly ploshe, sandy fine grained, soiff, moist, dark brown FIN: Sand, grovely, fine to coarse as abone, trainded to angular SP/GP Clay-os abone Grovel fine to ware, sandy classe dense, money, brown, with	Dewrited natural soil Decovery. 0 - 2' = 100% SS = 3-12-11-11 Blow count Decovery 2.0-4.0 = 100% SS=6-7-14-14 Decovery: 4.0-6.0 = 100% SS=9-5-9-9 Soil (EPA) Sample 3.5-4.0 SAI (EPA) Sample 4.0-5.5 Decovery: 6.0-7.6"=100% SS=6-6-30 SS=45-30-45-30 Decovery. 7.6-9.6=100%
				Lobbles	natural stil and roadgoust

PROJECT POSDECTAT SAURIL	TDD NO. FOS - 3611 - 340	DATE 8-21-87
WELL/BORING 25-34-002	LOCATION & Savare-South Fair	LOGGER M. PECENLI
DRILL METHOD Split Spoon DINLESISS	Park City UT	PAGE OF/
WATER LEVEL FIRST ENCOUNTERED Dry	FINAL Dom	ELEV.
√	<i>u</i> /	

	LITH COL	SAMPLE TYPE IDENT.	MOISTURE CONTENT WATER LEVEL	LITHOLOGIC DESCRIPTION	NOTES
2-3-4-5) 6 7-3	min i	IDENT.		TOPSOIL Clay saud ship, day gay	35 = 6-8-12-11 2acovary: 0-2.0' = 100% SS = 6-8-10-10 2acovary: 2.0-4.0' = 100% SS = 7-5-7 2acovary: 40-6.0' = 140%

Project PARK LIS AT Location PAIK LIS AT Location PAIK LIS AT Secondary H Palant Depth to water 93.55 [seet (G.L.) Cleveling from Measuring Point 6791. F.7 Depth (ft.) Depth (ft.) Depth (ft.) Depth (ft.) Depth (ft.) Depth (ft.) So	Project	PERP	Ar	Sgore	TDD No. FO8 - 26/1-34D
Depth to Noter Depth (ft.) De	Location	Park	Cit,	, UT	
Depth (ft.) Surface Casing (ft.) Surface Casing (ft.) Surface Casing (ft.) Berende Dissecter (in.) July Completion Grade Balow Completion Grade Basis: (acological Log Caconystical Log Inperiod Casing String(s): Caconing St	Geologist	H.	acei	71.1	
Destiler SD 4.9. Alter Stormator 10	Depth to W	ater	33.	25	Elevation from Measuring Point 6791. 87
Drillier S.D. G. Mind Standard Printing Flowmand Printing Flow Completion Filling Flow Completion Grant Grade Basic Geological Log Completion Grade Basic Geological Log Completion Grade	Denth (ft.)		_	
Bedrock at 83.0 H/ WOODS al state	10 20 30 40 50 60	5.0 48.0 205	オンカメメノハイン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Paterd Cooling	Rig Type Drilling Method Bit(s) Drilling Fluid Surface Casing Hollow Stem/Drive Casing I.D. (in.) Fortal Depth of Boring (ft.) Borehole Diameter (in.) MELL DESIGN: Above Completion Grade Basis: Geological Log Casing String(s): Cassing Casing String(s): Cassing Casing: 24 DVC Sulciule Screen: 27 DVC Sulciule Bentonite Seal(s) Bentonite Seal(s) Bentonite (type) Backfill (cuttings) Cament Composition: Cament Composition: Casing Type Total Cevel Casing Castly Completed to Casing Castly Castly Completed to Casing Castly Completed to Casing Castly Castly Completed to Casing Castly Castly Completed to Casing Castly Cast

Project	つこんてき	30	594010	<u> </u>	TDD No. = 203 - 35/1 - 34D
Location	2014	1. F	1.47		Well Number = - 1-1-1 - 1 =
Geologist	N.	7-77	11		Date(s) of Installation 7-15-37
epth to Wa	iter	`33.	25	feet (G.L.	
				- 	DRILLING SUMMARY:
Septh (ft.)			6 L L Z L .	ing steel	Driller Enrich DAG - Alton Schoomoker Rig Type CM 5 15
5	1	川		·	Drilling Method House San 2450/ Bit(s) TOO THE TYPE Drilling Fluid None
	•	X			Surface Casing Hollow Stem/Drive Casing I.D. (in.) 4/14 Total Depth of Boring (ft.) 24 5 Borehole Diameter (in.) 737
io					WELL DESIGN:
is		X			Completion Grade Grade Basis: Geological Log Geophysical Log Total Depth of Well (ft.)
1 20					Casing String(s): C=casing S=screen C -45 - 40' S - 35 40' Casing: 2° Scheduliz 60 FVC 112' Sections
1 1				·	Screen: 2 2227412 00 -10 0.020 .000
). 					Centralizers / ML 35 Gravel/Sand Pack 45 to 32.5 feet 10-20 M.25/1 (010)(000) 2102 J.C. Bentonite Seal(s) 32.5 to 20 feet
30	32.2		7	- 1: 1	Bentonite (type) /// PZ/// Sackfill (cuttings) to feet Cement Seal(s) //O.O. to D feet to feet
]]	32.5 33.25	<u> </u>	Z Z Z	nitial FINAL Tradizer	Protective Casing Type Tell with locking Cays
					Other
40		. =			Method Haud Cumr Duration hrs Estimated production 17.5 gpm
45	_				Water Appearance/5.6.4 Remarks:
	TOD				

Paginat	From	actor	Egione	TDD No. FO8 - 8611-341)
110,000	201/	Cita	UT	Well Number <u>P5 - MW - 20</u>
Location	<u>-7,612</u> . <u>//.</u>	- مرابر را	· 20 /	
			/	Date(s) of Installation 8/20-21/87
Depth to	Water	391	feet (G.L.	.) Elevation from Measuring Point
Depth (fi)	1.11	Steel Professive	Driller Earth As. Data Group (Fox & Gro.) Atton - Thoomaker
• •	0		cacina	Rig Type C192 75 Drilling Method H5A, AIR ROTTIRY Bit(s) TOOTH-TYPE: TRICONE TYPE
- 1	0 -			Surface Casing Hollow Stem/Drive Casing I.D. (in.) 4 14 14 6 5
B	±0 - ₹3		Initial	Total Depth of Boring (ft.) 125 Borehole Diameter (in.) 2
,	40 - 39		∑ Final	WELL DESIGN: **Below** Completion Grade Grade
	50 -			Completion Grade Grade Basis: Geological Log Geophysical Log Type Total Depth of Well (ft.) 120.4
	60 -			Casing String(s): C=casing S=screen (120.4 - 120 \$ 120 - 110 110 - 0
	70			Casing: PVC. 2", Schedule 80 10 40 Frons
	80-			Screen: PIC 2" Schidule 80. 1010 3045 Centralizers MONE
		123		Gravel/Sand Pack 120 to 98 feet Lolorado Silia Saud 10-20 Hest
	io -			Bentonite Seal(8) 98 to 96 feet 120 to 125 feet
-	76		Z	Bentonite (type) 1/4" 3entonite Yells Backfill (cuttings) NA to feet
Ì	~			Cement Seal(s) 0 to 96 feet to feet
_ le	0 -		· -	Cement Composition TOTY and Till Blumul (94)
Į				Protective Gasing Type Glex 6 T/8/1
12	1			Other
12	S 1 TD	<u></u>		WELL DEVELOPMENT:
		:		Method Hond Pamp . An Lift
7				Duration 2 hrs Estimated production 45 gpm
•				Water Appearance Signa muddle
				Remarks: valer 345 have was miller und howth
				dilline, from 110-120' deep with an rullage

Project Tosocoty Janne	TDD No. = 22 - 36 / - 34 C
Location Prize City 1/1-	Well Number 25 - 11 11 - 2
Geologist 2 1/6	Date(s) of Installation 7-15-37/7-47-8
Depth to Water 30.0 Feet (G.L.	Elevation from Measuring Point 6758.44
	DRILLING SUMMARY:
Depth (ft.) Boung Posting	Driller Egy 4. J. A. S. Lalion Schoomaking
M M Stall Corne	Rig Type CHC 73
3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Drilling Method HONON COM HUGT/ Bit(s) TOO THE ROLL Drilling Fluid 3 Gamer: Jest Macilland
5	Drilling Fluid 3 Gamers Desermant was -
	Surface Casing L.D. (in.)
	Total Depth of Boring (ft.) Borehole Diameter (in.)
10	WELL DESIGN:
	Above At Below Completion Grade Grade Basis: Geological Log Geophysical Log
15	Type
	Total Depth of Well (ft.) 43.5 Casing String(s): C=casing S=screen C=43 = -38 5 - 28 - 33
	32 - 0
20	Casing: 2° Schadule, 40 PVC 51 Schon (41 = 35
	Screen: 2 Junious Try Tre 120 John, 5 Storbon
	Centralizers None Gravel/Sand Pack 45.3 to 20 , feet
25 26 27 27	10-115 TIZSA CONTROL STUTE COTAC
	Bentonite Seal(s) 27 to 25 feet to feet
29 130 1 1 V Final	Bentonite (type) 194 PALLIS Backfill (cuttings) to feet
30 +30 5 1 1 2 Inihal	Cement Seal(s) 26 to 9 feet to feet
-	Cement Composition 490 5 current & + + 5000 ma 14011
■ 25 33 1-1 ■ 1	Protective Casing 1 2.0 to 2.0 feet
35	Other
38	WELL DEVELOPMENT:
1 40 -	Method Hand Pam D
	Duration hrs Estimated production v.5 gpm Water Appearance = 20
	Remarks:

70	molector faciare	TDD No. FO8-3611-340
hantian I	enle Cit, UT	Well Number PS - MW - 3.
eologist /	17011	Date(s) of Installation $\frac{7-28/2.9}{2} - 87$
	3.00	(21.2 2
epth to Water		
epth (ft.)_		DRILLING SUMMARY:
	=locking state	Driller ED. G.G. Alton Schoomaker
	Protective	Rig Type CMF -5 Drilling Method 11-0 11-01 SHLM SHCM
-3	is III lasing	Drilling Method Ito How SHIM ANCH
_		Bit(s) TONE TO Drilling Fluid 2 Cal Pot water
5 -	. `	Surface Casing
		Hollow Stem/Drive Casing I.D. (in.)
		Total Depth of Boring (ft.) 36.0 Borehole Diameter (in.) 71%
. !		Borehole Diameter (in.) 744
		WELL DESIGN:
10 -		
		Above Selow Completion Grade Grade Basis: Geological Log Geophysical Log
1		Completion Grade Grade
		Type
_		Total Depth of Well (ft.) 36.0
	V1 14	
15 -	\frac{1}{17} \frac{1}{17}	Casing String(s): C=casing S=screen - 34
_	<i>VA VA</i>	
	<i>Y Y Y Y Y Y Y Y Y Y</i>	Casing: 2" Silectule 80, PVC Ja 10 Sections
•		Screen: 2" Suidill 60 Dec, 5 Storon Con Set
∟ ⊣ ٪	ان (44) (44	screen: 2 July 11/16 20 27(2) 10 BE 10/10/1 10/19 11/19
20 -		Centralizers North
		Gravel/Sand Pack %6. to // feet
	97 Tinal	io-20 Pash hila sound
- 22	75	Bentonite Seal(s) / / to / feet to feet
		Bentonite (type) //L/1/5
م م		Backfill (cuttings) to feet
25 -		Cement Seal(s) to feet
72	6 1.	to the feet
	,	Cement Composition 40/2 ZUI AUTO TOOD - (My) Chil Varyidud Jupel (1 + Willey-
		Protective Copies (2 //to f) feet
		Protective Casing Type,
30 -	1 1 1 1	
1 - 3		Other
		ELL DEVELOPMENT:
ļ	1 1 1 1	_
		Method Hand Pump
		<u> </u>
35 -		Duration / hrs Estimated production 1.25 gpm Water Appearance
■ 36 47	DD L	Appear aires September 1
	•	Remarks:
_		

Project _	Prouve	cotor S	न्।वय	100 No. <u>=08-5611-340</u>
ocation	Fixel.	Cit"	UT	Well Number PS - MW -5
Geologist				Date(s) of Installation 7-20-27 7-27-27
	Water	•	feet (G.L.	, — · · · · · · · · · · · · · · · · · ·
- (st	,			DRILLING SUMMARY:
epth (ft	`	TU	1 - working steel	oriller E.D. A. T. Alton Schoomaker
_			protective casin	
	-3		[]	Bit(s) Tonva rule " Drilling Fluid "
5	┤.			Surface Casing
	12			Hollow Stem/Drive Casing I.D. (in.) 4/111 Total Depth of Boring (ft.) 34.0
=	'	V //	(/)	Borehole Diameter (in.)
10		V_{A}		WELL DESIGN:
. 'V			//	Abeve of Below Completion Grade Grade
		//	(-	Basis: Geological Log Geophysical Log Type
4			,	Total Depth of Well (ft.) 34.0
1 5	†		· ₹ Final	C -32 - 28 5 - 28 - 23 5 - 28 - 23 5 - 28 - 23 5 - 28 5
			•	Casing: 2" Schedule 80 PVC 5910/ Litions
-		 ,	. ≥ Initial	Screen: 2" Schaule no rec. 020 224
20	4			Centralizers Con-
		,		Gravel/Sand Pack 33 to 10 feet
	13	,		Bentonite Seal(s) /2 to 7 feet to feet
•			•	Bentonite (type) 1/4" PRIHITS Backfill (cuttings) 20 to 7 feet
2.5	']	' ≡		Cement Seal(s) 7 to 0 feet
_	00	, 三	3	Lement Composition 400 senoon le (Voice) (lag)
	26			Protective Casing Type 6" - W. W. W. W. W. Cock'ny - Op
30	, -	,		Other
		.	•	WELL DEVELOPMENT:
= a	33		<u>' </u>	Method Hand bumb
34.	TDD			Duration 0.7 hrs Estimated production 2 gpm
				Water Appearance
				Remarks: Wall was completed in a DATIFICE water table.
•	j			

Project	Horn	For	Square	TOO No. 708-8611-34D
lionation	Park 1	rit 1	Square	Well Number 75-1911-4
Ceologist	K. M	011		Date(s) of Installation 7-20/2/ - 37
Denth to	Water <u>å</u>	7.99	feet (G.L.)	
Jepe., 15		·_		DRILLING SUMMARY:
Depth (ft	·-)		111,	a Da a Alfan Colomanto
5		111	predective rasing	Rig Type CME 13
			peucy willising	Dilliand Title Tit
5	.]		N4	Bit(s) 7007# rept Drilling Fluid Nonel
_	6	N.	10	Surface Casing
	1			Hollow Stem/Drive Casing I.D. (in.) 779
-				Total Depth of Boring (ft.) 450 Borehole Diameter (in.) 7570
i i O	4			
	}	1 1		WELL DESIGN:
_]	11		Above at Below
				Completion Grade Grade Basis: Geological Log Geophysical Log
15	' 1			Type
]		<i>V</i> / _A	Total Depth of Well (ft.) #5
	f1B	 4	 	Casing String(s): C=casing S=screen
2 0	,]			·
20		11		Casing: 2" Scredule 80 DVC 5'010' Sections
_			1.	Screen: 2' Schiclife 60, PVC 020 50045
25	_	1.1		Centralizers None
2.5	' –	1.1	1.	Gravel/Sand Pack 45 to 18 feet 10-20 Mosk Silica - aug
				Bentonite Seal(s) /8 to /3 feet
5			Final	Bentonite (type) 1/4" F2/12+5
30	, [1.1		Backfill (cuttings) to feet
	31.5	1,	: V inital	Cement Seal(s) /5 to feet to feet
	31.5		Milai	Cement Composition490 300001/6 + 107000001 / //
8		一,		Protective Casing 6' to O.D.' feet
35		1 =		Protective Casing Type
_	36.5	1:1=	4.1	Other O' Steel with tolking in to
		1.		WELL DEVELOPMENT:
		$ \cdot $		
. 4 0	1		1.	Hethod Haud pump + bailar
7	141.5	,	- '	Duration 2 hrs Estimated production /. 5 gpm
_				Water Appearance
45	وها ا	<u> </u>	1	Remarks: Will was filler from the fines after completion
	, , , , , ,			Eurablois was down fault builer to dean flewell
7			2,	Turne completion well was shifted up to 41.5.
			6	Idintal Use Summary date to 25th

Project _	Prospe	10.62	Equall.	TOO No. <u>F98 - 8611-341</u>
Location	Pall.	at,	OT	Well Number PS-MW-6
Geologist	1. 7.	no!		Date(s) of Installation 7-20/21-37
Pepth to	Water	• 13	. O feet (G.L.)	
				ORILLING SUMMARY:
Depth (ft	.,1 —	TIA	2 Locking steel	Oriller E.A.D. J Alben Schoomake;
-			Protective casing	
	•			Bit(s) IMDH 1901 Drilling Fluid O call doshilld water
5	-6			Surface Casing Hollow Stem/Drive Casing I.D. (in.) 7'/7 Total Depth of Boring (ft.)
1	8			WELL DESIGN:
10				Completion Grade Basis: Geological Log Geophysical Log
- ~ 4				Total Depth of Well (ft.) 29.0 Casing String(s): C=casing S=screen C - 29 - 24 5 - 24-19
•	-13 -14		Tinal Initial	Casing: 2" Schedule 50 PVC
15	; -			Screen: 2" Sullainte 30" Por Oun Stori
				Centralizers Gravel/Sand Pack 10-20 MLL 3-Lia Salla Bentonite Seal(s) 8 to 6 feet
	-19			Bentonite Seal(s) 8 to 6 feet to feet Bentonite (type) //4* *********************************
20	1			Backfill (cuttings) to feet Cement Seal(s) 5 to 6 feet to 7 feet
				Cement Composition Traduct Type II Clumb
Į	-24			Protective Casing Type 5" SULLY WINE SOURCE CARS
25	i -			Other
_ _	}			Method Handi Pump
4	1700	<u></u>		Duration 7 hrs Estimated production / gpm Water Appearance clear
	, = 3			Remarks: Some vachti culting our mind with saud pock at 14-2' interval
				,

Project _	TIOSER	ctor	Square UT	TOO No. <u>FO3 - S611 - 34</u> D
Location	Disk	City	ŬΤ	Well Number F5 - HW - 7
Geologist				Date(s) of Installation 7-27-87
Depth to	Water	10.5	Zfeet (G.L.	
ļ				DRILLING SUMMARY:
Depth (ft			protective casing	Driller E.D. G. Alton Schoonater Rig Type CTYF 75 Drilling Method 150110011 JKem Huger Bit(s) Toroxo, type
	13) j	Drilling Fluid None!
5].			Surface Casing Hollow Stem/Drive Casing I.D. (in.) Total Depth of Boring (ft.) 2.5 Borehole Diameter (in.) WELL DESIGN:
10	4.5 40.52 -11.5 -12.0		₹ Final ZIniFial	Completion Grade Completion Grade Basis: Geological Log Fotal Depth of Well (ft.) Casing String(s): C=casing C=25-20 C=-15-0 C=-15-0 Below Grade Type Type
15				Casing: 2" Schedule 80 PVC 5010 Sections Screen: 2" Schedule BOPIC, .020 Stors Screen: None
				Gravel/Sand Pack 15 to //. Feet 10-10 //// Scien Scien Scien Bentonite Seal(s) //. 5 to ? Feet Bentonite (type) //// /C///// Backfill (cuttings) to feet
20				Cement Seal(s) G.5 to GROW TO) feet to feet Cement Composition 490 Sunmura / Value Utary Cand, 96% Dentificial Temper Top If the Utary Protective Casing Protective Casing Type 6" Sun curve Cocking Lap
2 5	J TOD	<u>;</u>		Other
-				WELL DEVELOPMENT: Method Hand Pum 10
4				Duration 0.75 hrs Estimated production 0.6 gpm Water Appearance musical
				Remarks:

Project _	Prospec	Ner	Sauar	TDD No. =28-8611-34D
Location	Drih	Cit,	v-	Well Number PS- MW-8
Geologist	Hile	Paca.	n4	Date(s) of Installation 3/4/27
		_	feet (G.L.	
				DRILLING SUMMARY:
Depth (ft	.)		TTT - Class	Oriller E. D. A.G. Alton Schoomaker
		11	3 Locking Steel	
1			Protective cosing	Drilling Method 1+0/1000 STEM 174505
5		И	M	Bit(s) TODY TOP Drilling Fluid //
•				Surface Casing
				Hollow Stem/Drive Casing I.D. (in.) 479 Total Depth of Boring (ft.) 40.0
_ 10			11	Borehole Diameter (in.) /5/8
] i	1		WELL DESIGN:
•				Above at Below
15				Above Above Grade Completion Grade Grade Basis: Geological Log Geophysical Log
15	1 1			Type
	-18			Casing String(s): C=casing S=screen -38.5-33.5 S -33.5 -33.5 -33.5 -33.5 -33.5
	1 1		$ \overline{n} $	- 26.5 - 33.3 S -77.5 Vo.5
20	-21			casing: 2" Silectule 80 PIC. Sa 10' Sections
			;	Screen: 27 Weaule 80PIC 0.020 stor
, c	- 24.87	\cdot	Final	Centralizers VONC
15	- (\cdot	1 • 1	Gravel/Sand Pack 39 to 2/ feet 10-20 Mbn blig land
	26.6	•	- ≥ nitial	Bentonite Seal(s) 2/ to /8 feet to
	-28.5	· =		Bentonite (type) 1/4 22/4/5
3 0	-	·)量		Backfill (cuttings) to feet Cement Seal(s) to feet
		, =		Cement Composition J % DUL FOURT + PO, WOULD 14.P. 1
_	-33.5	', =	,	Curry!
35		,	`,	Protective Casing Type
_		;	,	Other
		<u> </u>	[3]	WELL DEVELOPMENT:
40	J DO I			Method
7				Duration hrs Estimated production gpm
•				Nater Appearance
				COM 10 COSTON GERAND WARM COMPLETON
				I UN SNEWNED PC CO. S. N. by HSA)

Project	Cacon Saudia	TDD No
ocation	31/2 JA 1 1 -	Well Number
Geologist		Date(s) of Installation 7-27-37
	6.0 feet (G.L.	
•		DRILLING SUMMARY:
Depth (ft.)	Maloreing stel	•
2	crotagning facing	Drilling Method - now - now - now -
3		Drilling Fluid 100 har.
1 4		Surface Casing Hollow Stem/Drive Casing I.D. (in.) # 122 Total Depth of Boring (ft.) # 2
S -5.	5 4	WELL DESIGN:
		Above 22 Below Completion Grade Grade
3		Completion Grade Grade Basis: Geological Log Geophysical Log Type Total Depth of Well (ft.)
1 9		Casing String(s): C=casing S=screen C - 15 - 13
10-		Casing: 2º Schrolula 50 21C , 10' Sichons
1) -		Screen: 2" Walle 3020 1000 1000
12-	· Similar	Centralizers Ann.
13 -		Bentonite Seal(s) to to feet to feet
15		Bentonite (type) 1/4" >2/17 1/2/12= Backfill (cuttings) to feet Cement Seal(s) 1/2 to 7/0 feet
16 -15.1	5	to
16 84 TD	00	Protective Casing Type
•		Protective Casing Type Clear with rocking Copy Other
		WELL DEVELOPMENT: Hethod Hand Pump & Bailer
4		Duration / hrs Estimated production gpm
1	•.	Water Appearance Stray How Mudda
		Remarks:

Project Prospector Square. Location Fish Cit 197	TOO No. FOE - 3611 - 340
Location Fresk Cit 197	Well Number PS - MW - 10
Geologist M. Facanin	Date(s) of Installation 7-3/-37
Depth to Water 1.24 feet (G.L.)	Elevation from Measuring Point
Depth to Water 1.24 feet (G.L.) Depth (ft.) 1.8 -2. 3- 1.9 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.9	Date(s) of Installation 7-3/-37
	Hethod
. 1	Duration / hrs Estimated production U-S gpm Water Appearancemudsh

Project	Prospe com	Sauns.	TOO No. 708-2511-340
Location	Prospector	UT	Well Number DE - HILV - 11
Geologist	H. Peranc	1	Date(s) of Installation $3-13-\xi \neq$
Depth to W	nter	feet (G.L.)	Elevation from Measuring Point
Depth (ft.)_		DRILLING SUMMARY:
		pot coing	Oriller E.D. A. G. Alton Schoomaker Rig Type CHE 70
2	1.85	₩ Tinal	Orilling Method USA Bit(s) Tenyl
	2.9	= Initial	Orilling Fluid Metal
	· //	[4]	Surface Casing Hollow Stem/Drive Casing I.D. (in.) 4/4
.4	-		Total Depth of Boring (ft.) 97.0 Borehole Diameter (in.)
			WELL DESIGN:
•			Completion Grade Grade Grade
Ç			Basis: Geological Log Geophysical Log Type Total Depth of Well (ft.) 20.0
4			Casing String(s): C=casing S=screen -15-10
10	-		Casing: 2' Scholule 80 DVC
			Screen: 2" Scheaule 90 Frc 0.020 tot
12	- I, <u>=</u>	1	Centralizers ///// Gravel/Sand Pack // / to 2/ feet
-	,		Gravel/Sand Pack 10 to 55 feet 10-10 Hind Silia Sala Bentonite Seal(s) 2 to 15 feet
14	-		Bentonite (type) //4" / /// // // /// /// /////
	15 1	1.1	Backfill (cuttings) to feet Cement Seal(s) // to // feet
16			Cement Composition feet
8	3		Protective Casing / / / / to / feet Protective Casing Type
3 18			Other Other
•			ELL DEVELOPMENT:
20	┥ ┟-┕━		Method Haud pump
4			Duration SUMIN hrs Estimated production 1.2) gpm Water Appearance SUPAL MINARY
22	<u> </u>		Remarks:
	TDD 220		

ecology and environment, inc.

1776 SOUTH JACKSON STREET, DENVER, COLORADO 80210, TEL. 303-757-4984

International Specialists in the Environment

TO : Paula Schmittdiel, EPA Utah State Coordinator

FROM : Mike Carmien, E & E FIT

DATE : March 15, 1988

SUBJECT: Draft Report, Field Activities, Well Drilling, Prospector

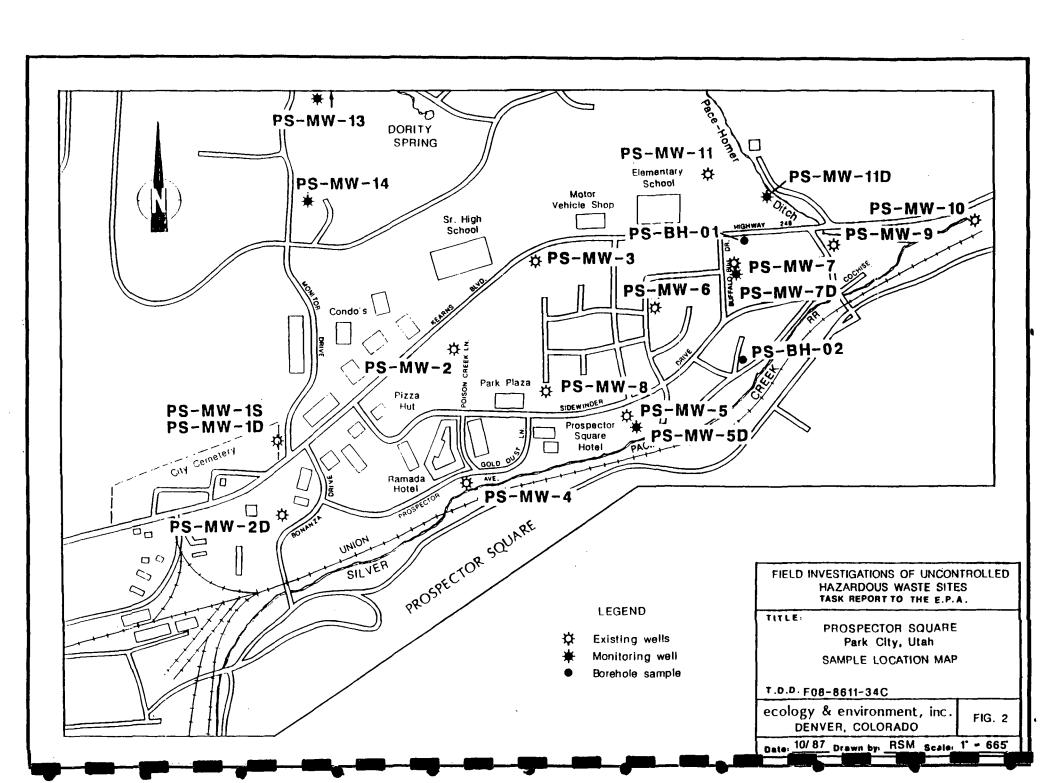
Square, Park City, Utah, TDD F08-8611-34J.

The purpose of this report is to briefly summarize the drilling activities at Prospector Square, Park City, Utah in fulfillment of TDD F08-8611-34J. Five new monitoring wells were installed throughout Prospector Square by E & E FIT, with project officer Ken Moll. These wells are to be used by the USGS for aquifer tests and ground water sampling. Scheduled events are: well installation, January - February, 1988; aquifer pump testing, February, 1988; and ground water sampling, March, 1988.

The objectives of the five monitoring wells were to provide data needed to determine if pumping of the Park Meadows Well affects water levels in the unconsolidated valley fill overlying the Thaynes Formation in areas adjacent to the Silver Creek Tailings Site. These wells were also used to determine if the valley fill at the Silver Creek Tailings site contains any layers of low permeable strata that would retard ground water flow towards the Thaynes aguifer.

The contractor used for the drilling and installation of these wells was Dave's Drilling out of Salt Lake City, Utah. Two different rig types were used, the first being a Chicago Pneumatic 7000 air rotary drill with hammer and casing; the second, a Portadrill Model TLT hollow stem auger rig. Several contract disputes arose over performance and sampling costs, with a final agreement of delay time payment minus the first half hour for each sample taken. With contract disputes settled, well installation work continued on without incident.

Five new monitoring wells were installed into the unconsolidated valley fill at and around Prospector Square, Park City, Utah. These wells were numbered PS-MW-13, PS-MW-14, PS-MW-11D, PS-MW-7D and PS-MW-5D. Figure 1 of this draft report illustrates the locations of these wells. Ecology and Environment, Inc. personnel worked closely with the USGS personnel in meeting the specifications of well lithology logging, bedrock confirmation, well installations and well development as specified in the contract. All wells were drilled to bedrock (Thaynes or Woodside Formations) and then the wells were set above the bedrock - valley fill interface


in the alluvium. All wells were then installed and developed according to contract specifications. Table 1 of this report lists the dates of drilling activities per well. This table also provides information on borehole depth, rig type, static water levels, depth of intake, etc.

Lithologic logging for all five wells was performed using 18 inch split spoon samplers. Samples were generally taken every 10 feet with the hollow stem auger rig, except when changes in lithology dictated a change in sampling depth. The Chicago Pneumatic Rig operated with 20 foot steel casings, which made sampling every 10 feet cumbersome and eventually a center of the contract disputes mentioned earlier. All samples were recorded in Field Log Books and pictures were taken by the USGS. For a more complete description of the individual well lithology, please see the attached lithologic logs.

Information regarding the lithology for well PS-MW-5D has been estimated for this report due to the unavailability of the field note book at the time this was written. A more complete lithology for PS-MW-5D will be updated into the Prospector Square's file when this information becomes avaiable.

TABLE 1
WELL CHRONOLOGY AND SPECIFICATIONS
PROSPECTOR SQUARE, PARK CITY, UTAH
TDD F08-8611-34J

WELL NO.	DATES OF DRILLING	DATES OF INSTALLATION 1988	BORE HOLE DEPTH	STATIC WATER LEVEL	DEPTH OF SCREEN	LOGGING METHOD	RIG TYPE
PS-MW-13	1/21-1/23	1/23-1/24	61 f:	8.7 ft	51-41 ft	Split Spoon	Casing Hammer
PS-MW-14	1/24-1/26	1/26-1/27	75 ft	27 ft	58.5-48.5 ft	Split Spoon	Casing Hammer
PS-MW-11D	2/4-2/6	2/6-2/7	85 ft	15 ft	79.8-69.8 ft	Split Spoon	Hollow Stem Auger
PS-MW-7D	2/9-2/13	2/13-2/14	138 ft	12 ft	130-120 ft	Split Spoon	Hollow Stem Auger
PS-MW-5D	2/88-2/21	2/21-2/22	95 ft	20 ft	. 93-83 ft	Split Spoon	Hollow Stem Auger

Project	Prospector Square.	
	Park City Hich	Well Number PS - MIC - 7D
Geologist _	Diane Coker	Date(s) of Installation $\frac{2/14/99}{2}$
O epth to Wa	Didne (Oker 20' minally; ter 11' post construction; pre-terelopment	Elevation from Measuring Point
	pre la light	DRILLING SUMMARY:
Depth (ft.)		Oriller Dave's Drilling
		Sait like City lirah
10		Rig Type <u>Fortabill</u> CPS 7000 Drilling Method hollow stem anger
		Bit(s) tooth (b)
1.0		Orilling Fluid <u>none used</u>
20		Surface Casing 1- " steel with locking steel cap
}		Hollow Stem/Drive Casing I.D. (in.) 474 Total Depth of Boring (ft.)
3 0		Borehole Diameter (in.)
-		
		WELL DESIGN:
- 40	4 13 13	Above , Below
		Completion Grade <u>6"</u> Grade
50		Basis: Geological Log Georphysical Log
_		Type <u>Spirt spoon and cutting</u> Total Depth of Well (ft.) 130 Sample
		Casing String(s): C=casing S=screen
60.	d (x) (2)	130' - 120' 5 - 120' - +.50' C -
_		120 - 4.30 - 2
7c		Casing: PVC 2", sched 80, flush joint
_		Screen: FVC. 2" 20-Stot
30		Centralizers none used
30		Gravel/Sand Pack 134 to 116 feet 3
_		10-20 mesh Colorado Silica sand &
90	1 1/1 1/1	Bentonite Seal(s) 116 to 44 feet 3
		Bentonite (type) 138-134 Volclay 1/2" pelicts: 116-94
		Backfill (cuttings) - to - feet
100		Cement Seal(s) 94 to 0 feet to feet
-		Cement Composition Portland Type II cement arout w
— 110		500 Quik Gel and 7 gal 420 per sack 1941b) cement
		Protective Casing Type
		Steel CAR
- 120		Other PVC Stim can an top of PVC canina:
		PVC screw cap on bottom of completion string WELL DEVELOPMENT:
- 130		_
1		Method Air lift
4 138 .		Duration 47/2 hrs Estimated production 7/2 gpm
	TD	Water Appearance
		Remarka:
		NUMBER ACC
		·

LITHGLUGIC LUG PROSPECTOR SQUARE

2age 1 of 2

RELL BORING NO. BUTTALO BUILTAGE TO TES, R4 E

ELEVATION (FSL)

DRILLING CONTRACTOR. <u>Dave's Omilling</u>
RIG TYPE <u>Fortadnill</u>
LOGGER <u>SH/DD</u>

WATER LEVEL 1st ENCOUNTERED (ft.895) 15.00 STATIO WATER LEVEL (ft.395) 12.00 (SSS = Selow Ground Surface)

	lithol. Column	Sample Type ID	LITHOLOGIC DESCRIPTION	COMMENTS
61 - C2			For description of samples from 0-25%, refer to Lithologic Log for Well PS-MW-7. located 5% morth of PS-MW-7D	No solit socon sambles obtained 0-24°
20				
- 30		CORE	SAND, v f to f, v w srtd, ang to sbang, gtz. mica. biot, ls & rk chps; and GRAVEL, c, p srtd, w/10% sdy cly mtx	Sol son 30-31.5'; blw et 15/43 (6"); 80% revy
40		CORE	CLAY. r brn to gy, sft to hd, w/blk str of carb mat: and SAND. m to c, w srtd, sbang to rd, fldsp, qtz, rk chos SAND. f to m, w srtd, sbang to ang, ss, ls, & sh chos, incr gr sz w/depth; and GRAVEL, sdy, cly (5-10%), p srtd, ang, ss, ls, sh chps	Spl son 35-36.5'; biw et 72 ttl: 100% revy Spl son 40-41.5'; 100% revy
		CORE	CLAY, brn, w/sd, gvl, & cbl	Spl spn 45-46.5'; blw ct 72/ 83/71 (6"); 90% rcvy
50		CORE	CLAY/SAND/GRAVEL, cbls; p srtd, ang to sbang, cly abt 10%	Spl son 55-56.5'; 100≭ revy
		CORE	CLAY/SAND/GRAVEL, cbls, p srtd, w/r ctzt clasts	Spl spn 65-66.5'; 100% rcvy

- 110	SERE	CLAY/SAND/GRAVEL. cols. r own; cly sft; sd m to c; sd, gvl & cbls p srtd. scanc to sord; clasts fldsp, ctz, ctzt, rx chos	35/35/32 (5"): 100% revy Sol son 110-111.5"; blw et 71/220/ (5"): 100% revy
- 100	30 7E	c. o srtd. spang to sord: gvi say. dly. o srtd CLAY, gy w/r & y str. hd. w/imbd sord ctot. ss. & rk coos. some w/wthrd on rind: also in cly. orn & blk card dat, incl roots	Spl son 100-101.5': 51w ct
50 :	JURE	LAY/SAND/GRAVEL. Intoo & mag: n err: cly say & he: sa m to	
- 60	IDRE	CLAY/SAND/GRAVEL. cois. r brn to v orn. ciy also ck on/brn	int 73-75.4' crop *fill" Spl son 65-88.5': 100% revy
- 70 -	`	CLAY/SAND/GRAVEL. cols. o srtq. wo sity sh. ss. & rk chas:	· · · · · · · · · · · · · · · · · · ·

roject Frost	pector Equa	are	TDD No	F08-8611-34
	City, Uta		Well Number	PS - MW - 14
		n/Ken Moll		nstallation 1/27/58
		feet (G.L.)	Elevation fro	om Messuring Point
		DRILLIN	G SUMMARY:	
epth (ft.).			r <u>Dave's</u> Dr	illing
}	111 141		Salt Lake	City, Itah
		Rig Ty	pe Air retarn	drilly Chicago Chumane 7000
		Drilli Dib(-)	ng Method Air	rotary casina dril + hammer
	[A] [A	DIC(S)	ng fluid <u>rone</u>	one 1778" Tiamond stud
		51 11 11	ing i toto <u>rone</u>	115624
10 -		Surfac	e Casing 🐠 '	steel with locking cap
	1:1 1:4			ing 1.0. (in.) 77/8
}		Total	Depth of Boring	(ft.) 75
		Boreno	le Diameter (in.	.) 77/6
-		WELL O	CCION	
		WELL D	F21PN:	
20 –				Below
		Comple	tion Grade A	it arade Grade
		Basis:	Geological Log	Geophysical Log
j				Type split spoon + cutings
	13 14	Total	Depth of Well (f	it.) 58.5 sample
		Casing	String(s): C=c	essing S=screen
30-		<u> 58.</u>	5 - 48.5	
_		<u> 48.</u>	<u> </u>	
		Casing	: 2" PVC	Flush joint Schol 80
		Screen	Z" PVC	20-slot (10-ft section)
				
40-	7.3	Centra.	lizers <u>none</u> /Sand Pack	used 13
		Crave1		11 to 43 feet
	<u> </u>	Benton	ite Seal(s)	43 to 37.5 feet
		55112511.		to feet
-		Benton.	ite (type)	Baroid Quik-Gel
<u> </u>			ll (cuttings)	tofeet
50-		Cement	Seal(s)	37.5 to O feet
		_		75 to 60.5 feet
			Composition P	
			uik-Cel and tive Casing	
			tive Casing Type	
			care casting type	cap
_ 60 -		Other	DVC Slip co	
			na: PUC so	crew cap at base of completio
	100	WELL DE	VELOPMENT:	String '
1	14 (1)		A+ - 1 · C+	,
	44436	Method	Air lift	
	14.454	8		
70-	1444	Duratio	on3 Appearance0	hrs Estimated production gpm
		Meter /	hhearance	7 (
	ら入会社	Remarks	s: Top ben	tonite seal was a combination
75-	النكنا	_		tonite pellets and 4 ft
יסדייני	, -			y. Ord by Dennis Elrod.
		<u> </u>	L OU STAPP	y. CHA BY VENNIS CIRAL

LITHOLOGIC LOG PROSPECTOR SQUARE

Page 1 of 2

AELL FORING NO. FS-MW-14
LOCATION FARK DITY. CARTIER PROPERTY
SW/SW/SE SEC 4, T 25, R 4 E

ELEVATION (MSL)

BORING COMPLETION DATE 01/24/86 DRILLING METHOD 919 POTARY

DRILLING CONTRACTOR DAVE'S DRILLING
RIG TYPE OF 7000
LOGGER YOUKM

WATER LEVEL 1st ENCOUNTERED ("t.368) 35.00 STATIO WATER LEVEL ("t.868) 37.70 (SGS = Selow Ground Surface)

	Column	Sample Type ID	LITHOLOGIC DEEDRIPTIEN	COMMENTS
	140401			
		GRAB	LOAM, dk orn	
		3RAB	SRAVEL. Wisit & say loam	f]
		SRAB	GRAVEL	; ; ;
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
10				i i
				•
		GRAB	GRAVEL, oldr & col; containing Calc, biot, ctz, FeS2, K-soar	
			& sitst	
20				1
				·
		GRAB	CLAY. 20-30%. #/gv1	·
		GRAB	CLAY & GRAVEL. it brn, spang clasts	
30				
	31.56	CORE	No sample	Spl spn 37-38.5'; 0% rcvy
40		GRAB	GRAWEL. p srtd, qtz, sltst, K-spar, Woodside sh chps	
		†	·	
50		•	†	†
		GRAB	CLAY, a brn, w/c sd	
		1		Spl son 60-61.5'
60		CORE	GRAVEL, c, w/cly; & SAND, cly, Calc cmt; ls rk chos	
		4		,
		<u>.</u>	 	

Page 3 of 3

Well: PS-MW-14 PARK CITY, CARTIER DROPERTY

Woodside sh: Thames is 70 BRAB SHALE. ourp. & LIMESTENE GRAB 70 - 751

Project Pros	pector Sau	arc	τ 00	No	508 - 40	:11-54-	
Project Prosp Location Park	- City, LI	tah	Wel	l Number	PS - 17	41-13	
Geologist Mile	Carmie	n/Ken Moll	Date	e(s) of Ins	tallation	1/24	185
Depth to Water	5.7	feet (G.L.)	Elev	etion from	Measuring Po	oint	
•		DF	RILLING SUMM	ARY:			
Depth (ft.)		_ ,	Oriller	Daves	Drilling		
ļ				SCIPL	He LITY	LITah	
	111 117	£	Rig Type <u>Ci</u>	ICACO PA	enmen'w 7	coo in ret	ary wicasing
		L	Oritiing wetr	100 Hir re	and Itali	g. drill and	hammer
					water		3 1 6 24
_		_					~~~~
						130 kings st	eel cap
10-		}	tollow Stem/E	rive Casin	g I.D. (in.)	77750	
	K.) \;	F	Rocal Depth o	neter (in.)		77/5	
		•					
	K] -]	V	WELL DESIGN:				
				41			
	K K	c	Completion	Above		Below	
20-	11 1	_				Grade ophysical Log _	
20				g0000 00g		Type split se	con Samples a
]	otal Depth o	f Well (ft	.) _51	- T T	cutti
		C	asing String	(s): C=ca	sing Sascre	en	3417
	14 13	-	41	41			
		-					
	FA FA	C	Casing: FVC	<u> 2", Sc</u>	hed 80,	flush join	<u>+ </u>
30-				<u>_</u>			
	1	3	creen:	-1 20-5	10t screen	<u> </u>	
	17 1	ā	entralizers	mone	used		
•	700	G	cavel/Sand P	ack	52_	to 38	feet
_			<u>Co</u>	lorado s	ilica San	<u>d 10-20 n</u>	restr
	Ulis Ulis	8	entonite Sea	l(s)		to 34	A .
•		A	lentonite (tv	ne) 7841	k (iei +	to 52	reet
40+		8	ackfill (cut	tings)		to	feet
			Cement Seal(s		62	to 5'S	feet
		_			34	to	feet
		Ü	Quik (Hand Ty	pe TI W/10	
		P	rotective Ca		4.5		feet
3			rotective Ca			w/steel los	ckina
		=			cen		0
50		0				+ comple	
		WĒ	LL DEVELOPME		C. SEPPLE C	ap an bott	<u>om</u>

	MATERIAL PROPERTY.	M	lethoa <u> </u>	ir lift	-		
4		=					
	15		urstion		rs Estimated	production(0.65 gpm
60-	11/4/4	•	ater Appeara	<u>Cua</u>			
ם דף	じょり	R	emerks: Con	ductivite	2 7150 um	hos @25°C.	W1150
⇔ ≒″		•			4440 w		" 1325
_		-			3500 ur		11 1444

LITHOLDGIC LOG PROSPECTOR SQUARE

Page 1 of 1

AELL BORING NO. PROMINED
LECATION FORM SITY. RACQUET SLUB
SWAWJSE SEC 4, T 23, R 4 E

ELEVATION (MSL)

BORING COMPLETION DATE <u>01/21/88</u>
DRILLING METHOD AIR ROTARY

DRILLING CONTRACTOR DAVE'S DRILLING
RIS TYPE OF 7000
LOGGER *I/KM*

WATER LEVEL 1st ENCOUNTERED (ft.868) 10.00 STATIO WATER LEVEL (ft.868) 3.70 (868 = Below Ground Bunface)

	Lithel. Column		LITHOLOGIC DESCRIPTION	COMMENTS
-		erab erab	CLAY & SILT, in orm, w/1/8° pol gvi CLAY. is orm. coist	
9		3.3.4B	CLAY & GRAVEL. a/cbls 2-3". spang	
- 20			CLAY, it brn, sity, i to m plas: & SAND, f to v f; lun, nem, & Mn stn; no org	Spl spn 20-21.5'; CL
- 30		GRAB GRAB	CLAY, w/s cbls, 1-2°, p srtd, sbang to sbrd CLAY/SAND/GRAVEL. orn, p srtd	·
•		GRAB	GRAVEL, a to vicibili gvi, spang, n/cly & so	6v1 60%, sd 30%, cly 10% Spl spn, 40-41.5'; 100% revy;
- 40		CORE SRAB	CLAY, a brn, tt, w/v f sd & intbd spang gvl; lan & hem stn (2%)	41.5-54, cly, sd, gvi; gvl cnt
- 50				may be incr w/depth
		GRAB GRAB	LIMESTONE, it gy to wn, mas, w coctd; some sh (Tr) chps	Sd/gv1 @ 541
- 60		GRAB	TD - 611	Refusai 61 ¹

Project _	Prospec	ter Squar	e	TDD No.	F08 - S	611-34	
location	Park C	ter Squar	:47	Well Number	FS - 141	.: -11D	
Geologist	Kan.M	oli/piane	Coker	Date(s) of In			
			feet (G.L.)	Elevation fro	m Me ssur ing Po	oint	
			DRILLING	SUMMARY:			
Depth (ft.) T		Orilles	Daves D	rillina.		
				Salt La	Ke lity ,		
ì				e <u>Portadril</u> ig Method Iwllo			·
		1 []	Bit(s)	too!L	(6)	; 	
(0)			Drillin	g fluid <u>hone</u>	used		
		1 11	Surface	Casing	Stanl		
			Hollow	Stem/Drive Casi	na I.D. (in.)	471	
•	-		Total C	epth of Boring	(ft.)	45	
•	-		Borenoi	e Diameter (in.)	7/4	
- 20	4	}	WELL DE	SICNA			
•		1 17	WELL OF	JIGHT			
_		1 [7]		-Above-		-Below	
			Complet		A+	Crede	
30	1		58818:	Geological Log	<u>/</u> iec	opnysical Log	and with an
_		1 1-1	Total D	epth of Well (fi	t.) 79.8	19pe 3811138	samples
	1 1	<		String(s): C=c			
	1 1.	1 1 1	70	<u> 9.8 - 69.8 </u>	5		
_	ード	1 14	<u>~</u>	98-0	- 4		
Ao	1 2		Casing:	PVC 2", S	sched 80	flach joint	
	1		Screen:	PVC 20-5	ict		
	1 1		Central	izers none	1504		
50] \\.		Gravel/	Sand Pack	79.8	to 66	feet
50] -	1 11		olorado Sili	cc. Sand	10-20 mes	h
		- -	Bentoni	te Seal(s)		to 81.6	feet
	1 1-		Rentoni	te (type)		to 63.0	feet
B		1 1		l (cuttings) ber		to 81.6	feet
60	1	1 17		Seal(s)		to 15	feet
					-,	to	feet
	1		Cui	Composition Per- le Gel (bentor	tlana Type	II cement	
•	1			ive Casing	3.8	to C	feet
7.				ive Casing Type	Steel	5" IO, 3.	8' length
70	7 F:	·圖::	Ohbra	Ovc.	PVC		2
				C serew city			<u>ara</u>
	1 1:			ELOPMENT:	Un person		
	1			1. 1.0			
9 80	1.		Method	Air lift			
7			Duratio	n 5	hrs Estimated	production (0.9 gpm
<i>ુ</i> ક	ن ا	belieftly the		ppearance Clou			
	לד ד ס						
				Developmen	r halled at	request of	Jim
			MASO	m, USGS	···		

Page . If I

ELEVATION (**312)

GERANG CEMPLETTEL DATE <u>18795/68</u> CRILLONG VETHED <u>Hollow stem auden</u>

DRILLING CONTRACTOR <u>Dave's Orilliss</u>
RIB TYPE <u>Portacmill</u>
LOSSER <u>RM/DC</u>

WATER LEVEL 1st ENCOUNTERED (ft.388) 17.00 STATIO WATER LEVEL (ft.288) 7.00 1988 = Selew Browne Sunface/

	: Lithoi. Column	Samble Type ID	LITHOLOGIC DESCRIPTION	COMMENTS
	11/2×01/1	3RAB	SDIL, cly, slty	ļ
		GRAB	GRAVEL	
		GRAB	. SLAY. alty, #/4" layer of decomposed straw	: : :
	MAKE.	GRAB	SRAVEL. sity, a/v f sd	
10		EDRE	GRAVEL. 2, W/v f so & sit: 2 snod. Ad to sono: W/ soldote.	Sal san snyn 10-11.57: 40%
		CDAR		
	181818	GRAB	SILT. dk brn. w/gvl & v f to f sa	
		CORE	CLAY, dk gy, sticky, v plas; & GRAVEL, c, p srtd. ang to sbrd	Spl son 15-16.5', 25% revy
20		CORE	CLAY, dk gy, no plas, v stiff	Sol son 20-21.5': 100≭ revy
				1
30		CORE	SAND. It brn, v f to crs. w srtd. sbang to sord	Sol son 30-31.51: 80% revy
20		Luxe	Same, it bill, 4 i to clas, waster, aparing to abire	
		GR AB	SAND, c, w/gvl	·
				Spl spn 40-41.51; 40% revy
40		CORE	GRAVEL, v c to cols; s srtd. ang to rd	
			·	
	11711			Sp1 san 50-51.5'; 30% revy
50		CORE	CLAY, it brn, sity, tt	DD1 380 00 0115 , 000 1649
		CO re	SAND, it brn, c, w/ gvl; sit 30%; and qtz obis	Sol son 55-56.5'; 100% revy
60				
	TIMA	CDRE.	CLAY, r brn (25% hem), 1 plas, tt; w/GRAVEL, c	Sol son 65-66.57; blw ct 200 ttl; BOX revy

!	: ! !		·	
- 70	3RAB	SAND. It brn. sity, w/sm amt cly	! • :	
-	IJÆ	SAND. It ion. I to m	Sol son 75-75.5' Sol son 80-81.5': 70% revv;	: :
- ð ú	CORE	SAND. It brn. w srtd. grds from f at top of spl to c at bottom of spl parrel: ctz. fld. rx cnps	15111197	
: :	CCRE	7 0 - 35'	Sol son 65-66.5': 0% revy; refusal 0 85'	

Project	Prespector Sacr Park City, U.	iare TDD No. FCG-8611-34
Location	Park City, U	tah Well Number P5-MW-5D
Genlomist	Mike. Carmien	Date(s) of Installation 2/22/38
-	er ZO	
Depth to war	.er	
Depth (ft.)		DRILLING SUMMARY:
		Driller Dave's Drilling Soft Lake City, Whah
		Rig Type Portadrill, CD 7000
		Drilling Method hollow'stem anger Bit(s) tooth
(C -		Drilling Fluid none used
1		Surface Casing 6" Steel with locking steel cap
		Hollow Stem/Drive Casing I.D. (in.) 1/4
20 -		Total Depth of Boring (ft.) 15 Borehole Diameter (in.) 7/4
20-		
		WELL DESIGN:
1		Above Below
3c -		Completion Grade Grade Grade Geophysical Log Geophysical Log
		Type split speen and cuttings
ì		Total Depth of Well (ft.) 93 Casing String(s): C=casing S=screen
		93 - 83 51 -
40 -		<u> </u>
		Casing: PVC. 2" School EC flush joint
-		Screen: I'VC .2" 2.C sict
~0		
50 -		Centralizers none usea Gravel/Sand Pack 95 to \$1 feet
_		10-20 mesh Colorado Silica sand
		Bentonite Seal(s) SI to 79 feet to feet
60-		Bentonite (type) Voicky 1/4 " Pellets
		Backfill (cuttings) to feet Cement Seal(s) 79 to (feet
		tofeet
		Guik Gel and 7 dat 420 pc. 94-16 sach cement
70-		Protective Casing
•		Protective Casing Type 6" Steel with locking cap
		Other
		WELL DEVELOPMENT:
80-		_
1		Method Air lift
-		Duration 3.5 hrs Estimated production gpm
a 90 -		Water Appearance silty w/fires
-10 -		Remarks:
95-		
	טד	

LITHOLOGIC LOG PROSPECTOR SQUARE

Page 1 of 2

HOLLOW STEM AUGER

PORING NO. PS-HH-50	ELEVATION (MSL)0	BURING COMPLETION DATE 02/22/88
CATION SIDEWINDER DRIVE		DRILLING METHOD HOLLOW STEM AUG
IN THE CONTRACTOR DAVE'S DRILLING		WATER LEVEL 1st ENDOUNTERED (ft, BGS) 25.00
S TYPE PORTADRILL		STATIC WATER LEVEL (ft, BGS)20.00
GGER CARMIEN		(BGS = Below Ground Surface)

 Lithol. Sample Column Type II	LITHOLOGIC DESCRIPTION	COMMENTS
CORE	REFER TO WELL PS-MW-5 FOR DESCRIPTION OF LITHOLOGY FROM O-12 FT CLAY, reddish brown, matrix mixed with fine to coarse sand, angular to subangular.	8" SURFACE CASING CEMENTED FROM 0-12 FT Split spoon driven from 20- 21.5 ft; 40% recovery
CORE	GRAVEL/CLAY/SAND, poorly sorted, 25% gravel, 60% clay, 15% sand; clay reddish brown, sand med to coarse, angular to subangular	Split spoon driven 40-41.5 ft; 60% recovery.
CORE	CLAY, reddish brown, plastic, moist, very fine silt within matrix; clay tight, consistent.	Split spoon driven 60-61.5 ft; 100% recovery.

Well: PS-MW-5D

- 80	CORE	CLAY/GRAVEL, clay reddish brown, intermixed with angular to subangular 0-1" sandstone chips; some evidence of Woodside shale; purplish staining.	Split spoon driven 80-81.5 ft; 85% recovery.
90		22	
_	CORE	Drilling has ceased due to presence of natural gas in bore- hole.	Drilling stopped at request of Park City, USBS, and E & E.

7

1

]

USED IN LITHOLOGIC LOG DESCRIPTIONS

About	abt
Angular	ang
Approximate, Approximately	aprox
Average	av
Biotite	biot
Black	blk
Boulder	bldr
Brown	brn
Calcite, Calcareous	calc
Carbonaceous	carb
Cement, Cemented	cmt
Clay, Clayey	cly
Coarse	С
Cobble	cbl
Compact	cpct
Crossbedded	xbd
Crystal	x1
Cuttings	ctgs
Dark	$d\mathbf{k}$
Decrease	decr
Driven	drvn
Feldspar	fld
Fine	f
Fragment	frag
Grade	grd
Gravel	gvl
Green	gn
Hard	hd
Hematite	hem
Increase	incr
Interbedded	intbd
Light	lt
Limonite	lmn
Little	ltl
Material	mat
Matrix	mtx
Medium	m
Mixed	mxd
Part	pt
Pebble	pb1
Pink	pk
Plastic	plas
Poor, Poorly	P
Purple	purp
Quartz	qtz
Quartzite	qtzt
Recovery	rcvy

ABBREVIATIONS

USED IN LITHOLOGIC LOG DESCRIPTIONS (CONTINUED)

Sand. Sandy Shale Silt Silty. Size Small Soft Sorted Split Spoon Stain Streak Subangular Subrounded Tight Very Weather Weathered Well White With Without Yellow

sd sdy sh slt slty sz s sft srtd spl spn stn str sbang sbrd tt v wthr wthrd wh w/ w/o

y

ATTACHMENT B FIELD AUDIT REPORT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION VIII

999 18th STREET-SUITE 500 DENVER, COLORADO 80202-2405

SEP 2 8 1987

REF: **8ES-ES**

MEMORANDUM

T0:

Paula Schmittdehl, 8HWM-SR

Project Officer

FROM:

Lester D. Sprenger, 8ES-TI

Field Quality Assurance Officer

SUBJECT: Field QA Audit of the Silver Creek Tailings Well Superfund

Sampling Activity

I have attached for your use the Field QA Audit on the subject plan. The sampling activity was carried out very effectively and should result in valid and defensible data.

Attachment

(w/attachment) Jim Littlejohn, 8ES-AS (w/o attachment) Marshall Payne, 8ES-ES

UNIVERSAL FIELD OVERVIEW CHECKLIST

Site Name Silver Creek Tailings
Location Park City, Utah
Study Date(s) 8/31 and 9/1/87
Facility Contact Ron Ivie
Phone Number 649-9321
Contractor/State Personnel Jim Mason - USGS
Address Salt Lake City, Utah
·
Phone Number
Project Leader Muhammad Slam - UBSHW
Other Contractor/State Personnel
ESD Overview Personnel Lester D. Sprenger
Other Personnel and Affiliation
Ken Inompson - USGS
Fire Long - obsitu
Robert Eddy - E&E Dan Kenney - E&E
Paula Schmittdehl - EPA

1) Was a study plan, work plan, site operations plan, etc. issued for this investigation? Date Issued 6/22/87	Y
Date Issued 6/22/87	
If YES:	
Was the study plan reviewed by ESD?	Y
Was the study plan acceptable?	<u> </u>
SAMPLING	
General Procedures	
1) Were sampling locations properly selected?	<u>Y</u>
If No, explain	
2) Were samples collected starting with the least likely contaminate and proceeding to the most likely contaminated? Remarks	ted Y
3) Were new disposable rubber gloves worn during collection of all samples? Remarks	Y
	
4) Was sampling equipment wrapped in aluminum foil and protected fr possible contamination prior to sample collection?	N N
If No, explain Sample equipment is kept in clean carrying bags.	
5) If equipment was cleaned in the field, were proper procedures us (This includes storage method for rinse water and solvents)	sed? Y
If No, explain	
6) What field instruments were used during this investigation? PH meter and conductivity meter	

٠,

Were field instruments properly calibrated?	у
If No, explain	
Were calibration procedures documented in the field notes? Remarks	<u>у</u>
Were the samples chemically field preserved? If No, explain	<u>У</u> _
Were the samples iced?	уу
Were samples for selected parameters field filtered?	<u> </u>
If Yes, list parameters and describe procedures. Meters - 0.45 micron filter using a peristaltic pump.	
l Sampling	v
l Sampling Was depth of well determined?	<u> Y</u>
	<u>Y</u> <u>Y</u>
Was depth of well determined?	<u>ү</u> <u>ү</u>
Was depth of well determined? Was depth to water determined? Were the above depths to water converted to water level elevations	Y Y
Was depth of well determined? Was depth to water determined? Were the above depths to water converted to water level elevations common to all wells? Describe how the depths were determined	<u>Y</u> <u>Y</u>
Was depth of well determined? Was depth to water determined? Were the above depths to water converted to water level elevations common to all wells? Describe how the depths were determined Surveyed by J.J. Johnson, Park City, Utah. How was the volume of water originally present in each well determined.	Y Y
Was depth of well determined? Was depth to water determined? Were the above depths to water converted to water level elevations common to all wells? Describe how the depths were determined Surveyed by J.J. Johnson, Park City, Utah. How was the volume of water originally present in each well determined? with a steel tape measure	Y Y
Was depth of well determined? Was depth to water determined? Were the above depths to water converted to water level elevations common to all wells? Describe how the depths were determined Surveyed by J.J. Johnson, Park City, Utah. How was the volume of water originally present in each well determined? with a steel tape measure Was the volume determined correctly? How was completeness of purging determined? Volume Measure Yelme/Flow rate	Y Y

8)	Was a dedicated (in-place) pump utilized?	Y or N
	If no, describe the method of purging (bailer - include type and construction material, pump - include type) A PVC Brainard Kelman pump was used.	
9)	How were the samples collected? Bailer Pump X Combination	
	Construction material of bailer:	
	Design of bailer Open Top Closed Top Other	
10)	If a pump was used, describe how it was cleaned before and/or between wells. Soapy water, rinsed with water.	
11)	Was the sample properly transferred from bailer to sample bottle (i.e., was the purgeable sample agitated, etc.)?	Υ
12)	Was the rope or line allowed to touch the ground?	N/A
13)	Was any wetted rope or line discarded after use at each well?	N/A
14)	How many wells were sampled?	_7
Sur	face Water Sampling	
1)	What procedures and equipment were used to collect surface water samples?	N/A
	Who collected samples?	
2)	Did the samplers wade in the stream during sample collection?	N/A
	If Yes:	
	Did the sampler face upstream while collecting sample?	N/A
	Did the sampler insure that roiled sediments were not collected along with water sample?	N/A

Y or N

3)	Note any deficiencies observed during the collection of the surface water samples	
Was	te, Sludge, Soil/Sediment Sampling	
1)	What procedures including equipment were used to collect soil/sedimes samples?	ent
2)	Were the soil/sediment samples well mixed prior to placing the samplin the sample container?	Le N/A
3)	Note any deficiencies observed during the collection of the soil/sedment samples	ii-
		 - -
	Total number of samples collected	
Oth	ner Sampling	
1)	What other types of samples were collected during this investigation	n?
2)	What procedures were used for the collection of these samples?	
		
	Who collected samples?	
QUA	ALITY ASSURANCE/QUALITY CONTROL	Y or N
	(While all of these QA/QC procedures are not necessarily used, please identify the specific techniques which were employed by sampling personnel.)	
1)	Did the sampling personnel utilize any field trip blanks?	<u> </u>

	1 01 1
Did the sampling personnel utilize preservative blanks?	N
If Yes, to either of the above questions, list the types and handli of the blanks	ng
	,
Were any equipment blanks collected?	<u> </u>
If Yes, list: Deionized organic-free water was poured through sampling equipment - 1 sample collected	
Were any duplicate samples collected?	Y
If Yes, list the types (parameter coverage, etc.) and describe thei handling. one sample for all parameters - handled as a regular sample	
Were any spiked samples utilized?	N
If Yes, list the types (parameter coverage, etc.) and describe thei handling.	r
LD DOCUMENTATION AND CHAIN-OF-CUSTODY	
Were split samples offered to the site owner or facility representative?	<u> </u>
Was a receipt for samples given to the site owner or facility representative prior to leaving the site?	N/A
Were chain-of-custody records completed for all samples?	Y
	.,
Were sample tag numbers and laboratory traffic report form numbers cross referenced to chain-of-custody forms?	Υ
	<u>Y</u>
cross referenced to chain-of-custody forms?	

		Y or N
8)	Were all sample tags and chain-of-custody forms signed by sample collector(s)?	
9)	Were sampling locations adequately documented?	<u> </u>
	If No, explain	
10)	Was sampling documented with photographs?	<u> </u>
	If Yes, was a photolog maintained?	
11)	Were the samples shipped to a contract laboratory?	N
	If Yes:	
	Were the traffic report forms filled out properly?	
	Were the samples properly packed for shipment?	
Qua	TE REGULATORY AGENCY PERSONNEL lifications of investigative/sampling personnel (training and erience) by names	Y or N
	e investigative/sampling personnel received sampling technique and ipment training?	<u> </u>
Hav	e personnel received safety training?	Υ
tra	yes to either of the above questions, list where and when the ining was received and who provided the instruction. It State offices once a year by EPA or EPA contractor.	
	the investigative/sampling personnel undergo periodic refresher ining regarding safety?	<u> </u>
	the investigative/sampling personnel have appropriate safety equipt in their possession during this inspection?	<u> </u>
	YES, describe the equipment which was available and/or used during s inspection. HNu	
If	NO, list the equipment which was needed.	

	Y or N
Have the investigative/sampling personnel been categorized as to the type of inspections they can conduct?	<u>Y</u>
Have the investigative/sampling personnel had comprehensive physicals?	<u> </u>
Do the sampling personnel participate in a medical monitoring program (i.e., periodic follow-up physicals)?	Υ
If yes, how often? Yearly	
Do the investigative/sampling personnel perform the entire RCRA Interim Status Inspection or merely collect samples? N/A	
If the personnel only collect samples, how are their sampling efforts coordinated with the rest of the inspection? N/A	
If state personnel did not collect samples, did they thoroughly evaluate sampling procedures used by facility?N/A	
If facility collected samples, did state representatives accept a split sample(s)?	
SOP (Applies only to state overviews) OAPP CERCLA Has the state developed an SOR for RORA field sampling? Did the state personnel have a copy of the SOR with them during this inspection? What does the SOR Cover?	<u>-</u>
Field inspections in general (sampling techniques, etc.) Sample handlingX Sample I.D. and chain-of-custodyX Uses and limitations of various types of bailers and pumpsX Equipment cleaningX Field measurements (cond., pH, T, etc.)X Calibration of field instrumentsX Other OAPP Did they follow their SOOK during this inspection?	<u> Y</u>

GENERAL COMMENTS/OBSERVATIONS

The sampling went very well. The data from this sampling activity should be
valid and defensible.
At the first sampling site I did have them cut off the brass end of a rubber
garden hose which was attached to the well pump. Since the sample plan did not
call for organic analysis I had no objection to the use of a rubber garden hose
however, had they been taking samples for organic analysis, I would have had
them change to teflon tubing.

ATTACHMENT C
MODIFICATIONS TO WORK PLAN

ADDITIONAL WORK NOT INCLUDED IN ORIGINAL WORK PLAN

During drilling operations of the original 11 monitoring wells, the need for two additional monitoring wells became apparent. Due to the shallow depth at which consolidated rock was encountered in the upgradient, deep, alluvial well, a second deep well was completed to insure that a true representation of the quality of water at depth would be obtained.

Preliminary water-level data from the completed monitoring wells indicated a possible component of ground-water flow in a northeasterly direction, away from the tailings area, in addition to the component of flow along Silver Creek. Therefore, to insure representation of downgradient conditions, an additional monitoring well was completed near the Pace-Homer Ditch, north of the tailings area.

At the request of the U.S. Environmental Protection Agency, additional aquifer characterization was completed in the Silver Creek Tailings area. The additional work was designed to determine whether there is a connection between the unconsolidated valley-fill and the consolidated-rock aquifer used as a municipal water supply. Also, the transmissive properties of the unconsolidated valley-fill would be characterized from lithologic descriptions and slug tests. Three elements of work were included in this phase. First, five, deep, alluvial wells were completed near the consolidated rock. Three of these wells will be used to characterize the lithology and quality of water at depth in the tailings area. The remaining two additional wells were located between the tailings area and the Parks Meadows Municipal Well. These wells were monitored during an interference test.

The second element of the additional aquifer characterization involved a 72-hour interference test designed to determine effects of pumping the Park Meadows Well on water levels in the Thaynes Formation, Woodside Shale, unconsolidated valley-fill, and on discharge of springs and streams in the area. All wells, springs, and streams were monitored during the test.

The final element was designed to obtain estimates of horizontal hydraulic conductivity from each of the monitoring wells. These estimates can be derived from data obtained from slug tests of each well. Rather than using a slug of water injected into each well, water can be displaced within the well by a cylinder, and recovery can be monitored.

ATTACHMENT D OUTLINE FOR STUDENT T-TEST R450-1-F APPENDIX D

TESTS FOR SIGNIFICANCE

As required in 7.13.4.(b), the owner or operator shall use the Student's t-test to determine statistically significant changes in the concentration or value of an indicator parameter in periodic groundwater samples when compared to the initial background concentration or value of that indicator parameter. The comparison shall consider individually each of the wells in the monitoring system. For three of the indicator parameters (specific conductance, total organic carbon, and total organic halogen) a single-tailed Student's t-test shall be used to test at the 0.01 level of significance for significant increases over background. The difference test for pH shall be a two-tailed Student's t-test at the overall 0.01 level of significance.

The Student's t-test involves calculation of the value of a t-statistic for each comparison of the mean (average) concentration or value (based on a minimum of four replicate measurements) of an indicator parameter with its initial background concentration or value. The calculated value of the t-statistic shall then be compared to the value of the t-statistic found in a table for t-test of significance at the specified level of significance. A calculated value of t which exceeds the value of t found in the table indicates a statistically significant change in the concentration or value of the indicator parameter.

Formulae for calculation of the t-statistic and tables for t-test of significance can be found in most introductory statistics texts.

Cochran's Approximation for the Behrens-Fisher Students' t-test. Using all the available background data (N_b readings), calculate the background mean (X_B) and background variance (S_B 2). For the single monitoring well under investigation (n_m reading), calculate the monitoring mean (x_m) and monitoring variance (S_m 2).

For any set of data (X1, X2 . . . X_n) the mean is calculated by:

$$\overline{X} = \frac{X_1 + X_2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot + X_n}{n}$$

and the variance is calculated by:

$$s^{2} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} \cdot \cdot \cdot \cdot + (x_{n} - \overline{x})^{2}}{n-1}$$

Where "n" denotes the number of observations in the set of data.

The t-test uses these data summary measures to calculate a t-statistic (t*) and a comparison t-statistic (t_c). The t* value is compared to the t_c value and a conclusion reached as to whether there has been a statistically significant change in any indicator parameter.

The t-statistic for all parazmeters except pH and a similar monitoring parameters is

If the value of this t-statistic is negative then there is not significant difference between the monitoring data and background data. It should be noted that significantly small negative values may be indicative of a failure of the assumption made for test validity or errors have been made in collecting the background data.

The t-statistic (t_c) , against which t* will be compared, necessitates finding tp and t_m from standard (one-tailed) tables where,

 $t_B = t-tables$ with $(n_B - 1)$ degrees of freedom, at the 0.05 level of significance.

 t_m = t-tables with $(n_m - 1)$ degrees of freedom, at the 0.05 level of significance.

Finally, the special weightings W_B and W_m are defined as:

$$W_B = \frac{S}{n_B}$$
 and $W_m = \frac{S}{n_m}$

and so the comparison t-statistic is:

$$t = \frac{\text{W t}}{\text{B B}} + \frac{\text{W t}}{\text{m m}}$$

The t-statistic (t*) is now compared with the comparison t-statistic (t_c) using the following decision rule:

If t^* is equal to or larger than t_c then conclude that there most likely has been a significant increase in this specific parameter.

If t^* is less than t_{C} then conclude that most likely there has not been a change in this specific parameter.

The t-statistic for testing pH and similar monitoring parameters is constructed in the same manner as previously described except the negative sign (if any) is discarded and the caveat concerning the negative value is ignored. The standard (two-tailed) tables are used in the construction $t_{\rm C}$ for pH and similar monitoring parameters conclude that there most likely has been no change.

A further discussion of the test may be found in Statistical Methods (6th Edition, Section 4.14) by G.W. Snedecor and W.G. Cochran, or Principles and Procedures of Statistics (1st Edition, Section 5.8) by R.G.D. Steel and J. H. Torrie.

	STANDARD T-TABLES 0.05 LEVEL OF SIGNIFICANCE				
	Degrees of	Freedom	t-values (one-tail)	t-values (two-tail)	
ī.			6.314	12.706	
2.			2.920	4.303	
3.			2.353	3.182	
4.			2.132	2.776	
5.			2.015	2.571	
6.			1.943	2.447	
7.			1.895	2.365	
8.			1.860	2.306	
9.			1.833	2.262	

```
10.
                                1.812
                                                  2.228
                                1.796
                                                  2.201
11.
12.
                                1.782
                                                  2.179
13.
                                1.771
                                                  2.160
14.
                                1.761
                                                  2.145
15.
                                1.753
                                                  2.131
                                1.746
                                                  2.120
16.
17.
                                1.740
                                                  2.110
18.
                                1.734
                                                  2.101
19.
                                1.729
                                                  2.093
20.
                                1.725
                                                  2.086
                                1.721
21.
                                                  2.080
22.
                                1.717
                                                  2.074
23.
                                1.714
                                                  2.069
24.
                                1.711
                                                  2.064
25.
                                1.708
                                                  2.060
30.
                                1.697
                                                  2.042
40.
                                1.684
                                                  2.021
```

Adopted from Table III of "Statistical Tables for Biological, Agricultural, and Medical Research" (1947, R.A. Fisher and F. Yates).

KEY: Hazardous Waste

1987 26-14 ATTACHMENT E INTERFERENCE TEST DATA

Figure 6.-Fluctuations during interference test (dashed where estimated).



Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

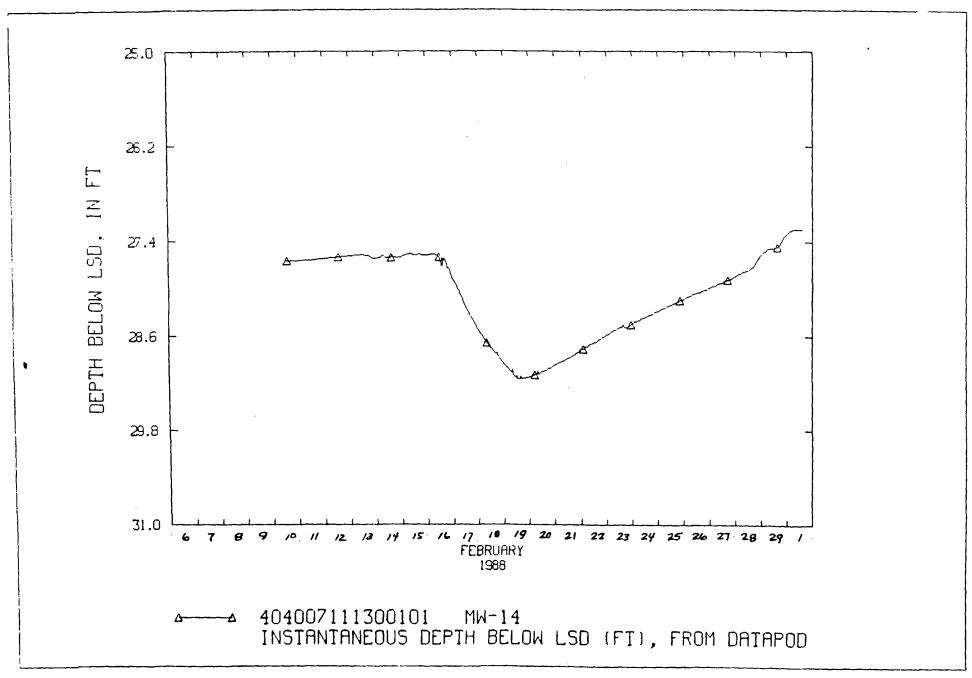


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

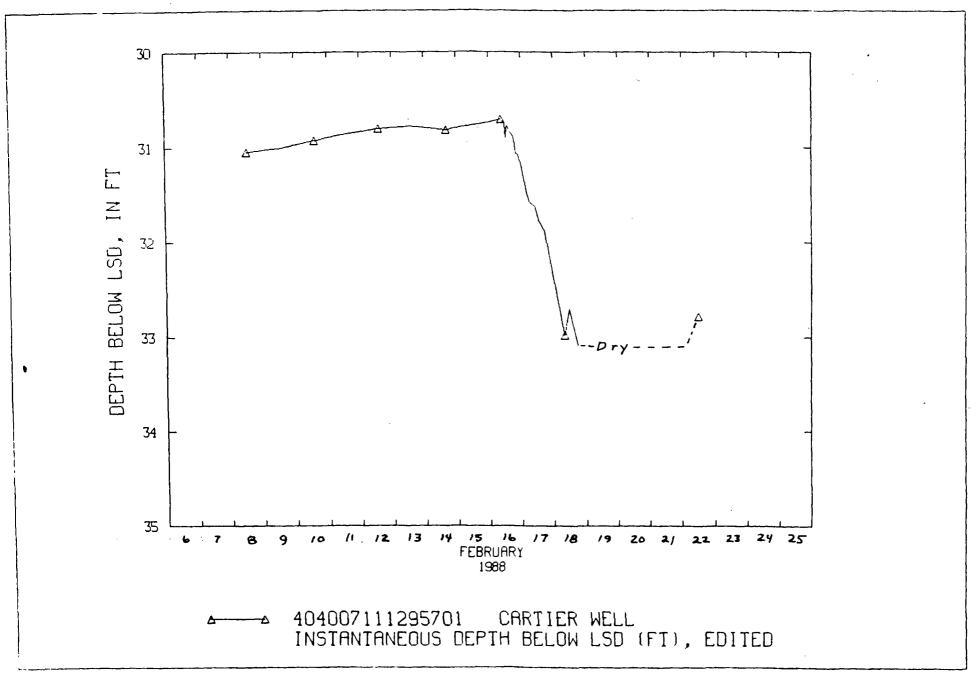


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

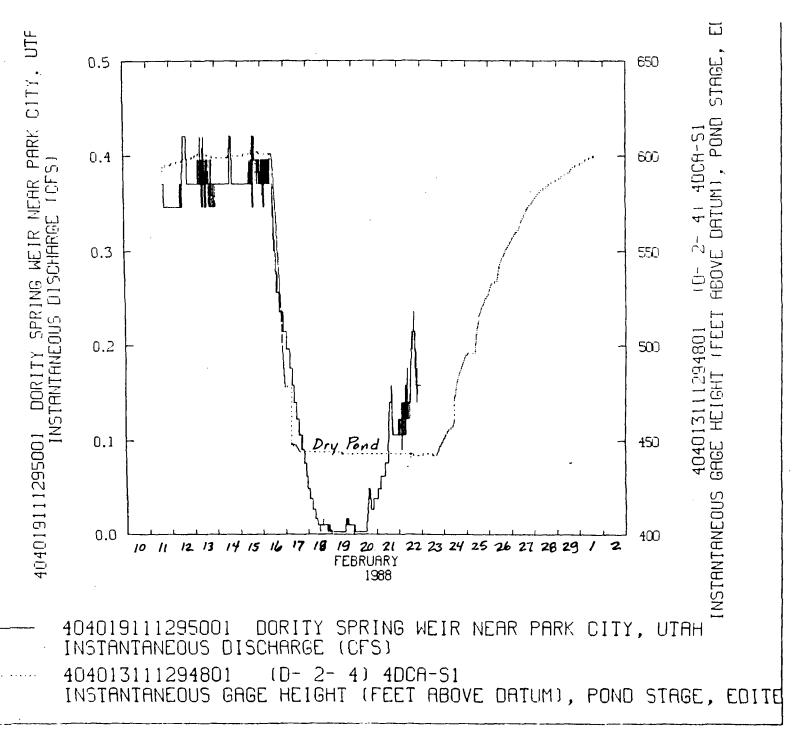


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

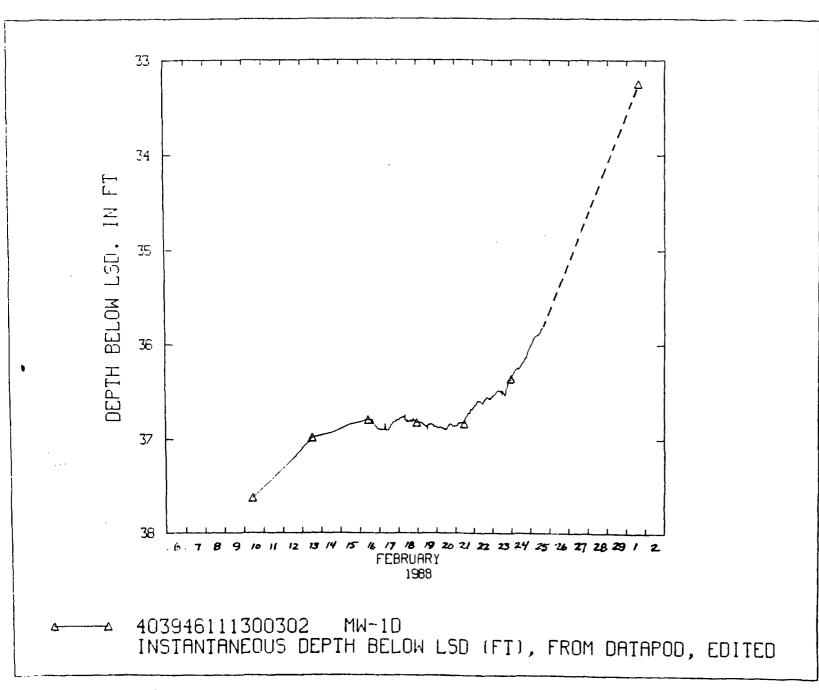


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

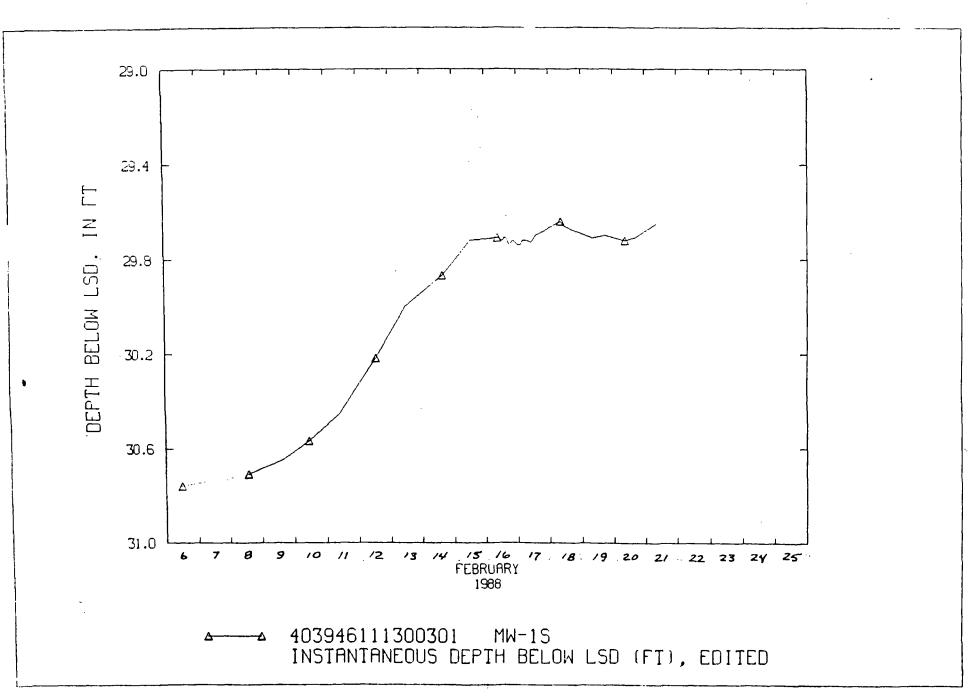


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

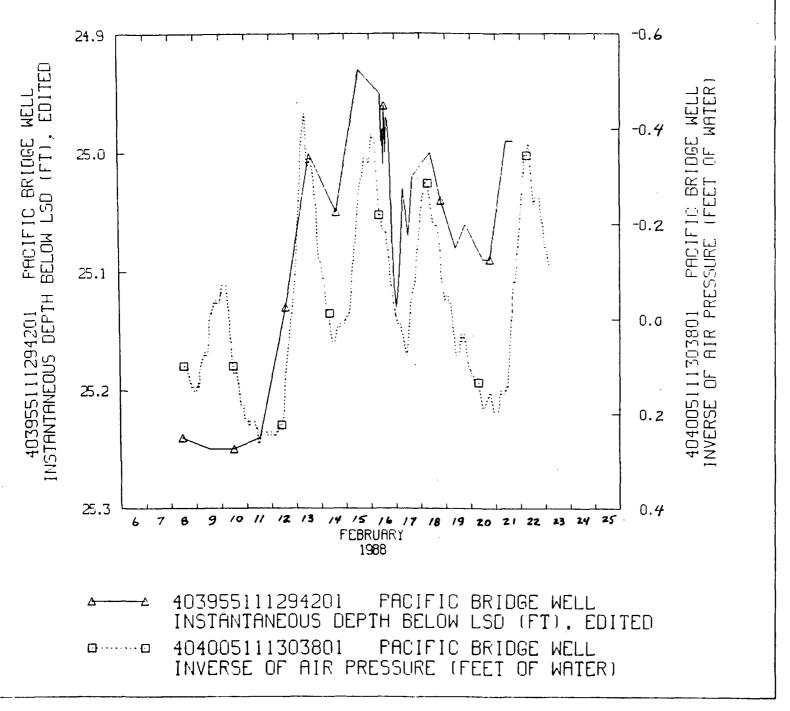


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

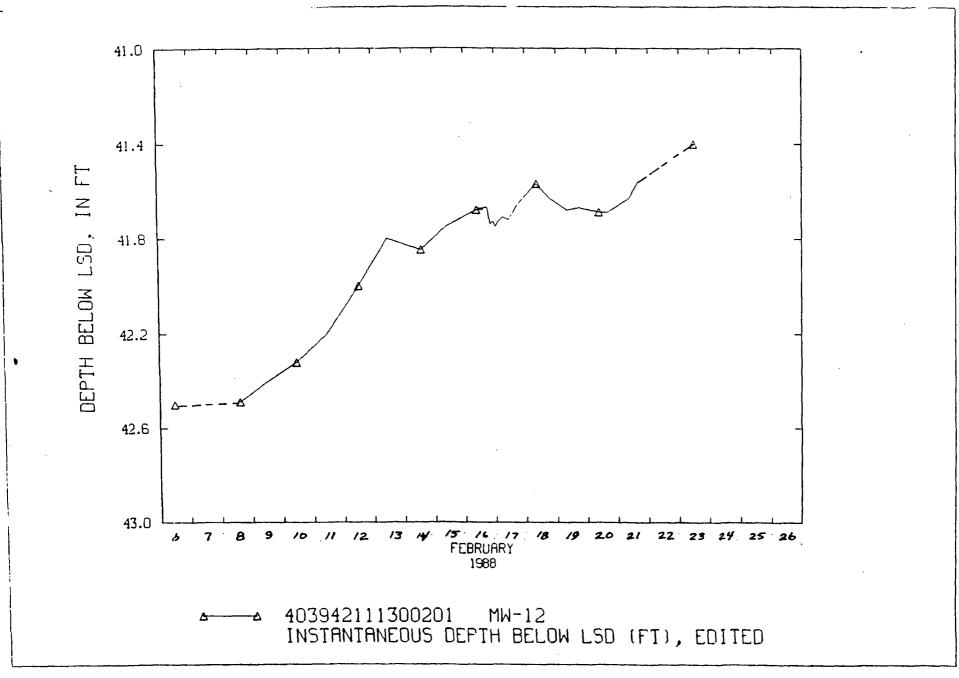


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

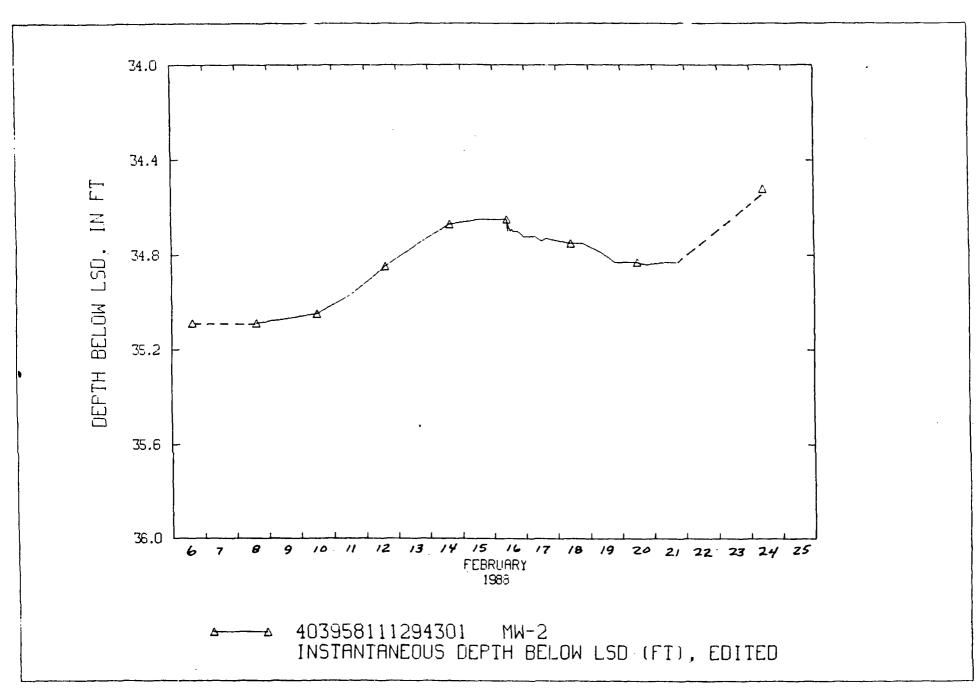


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

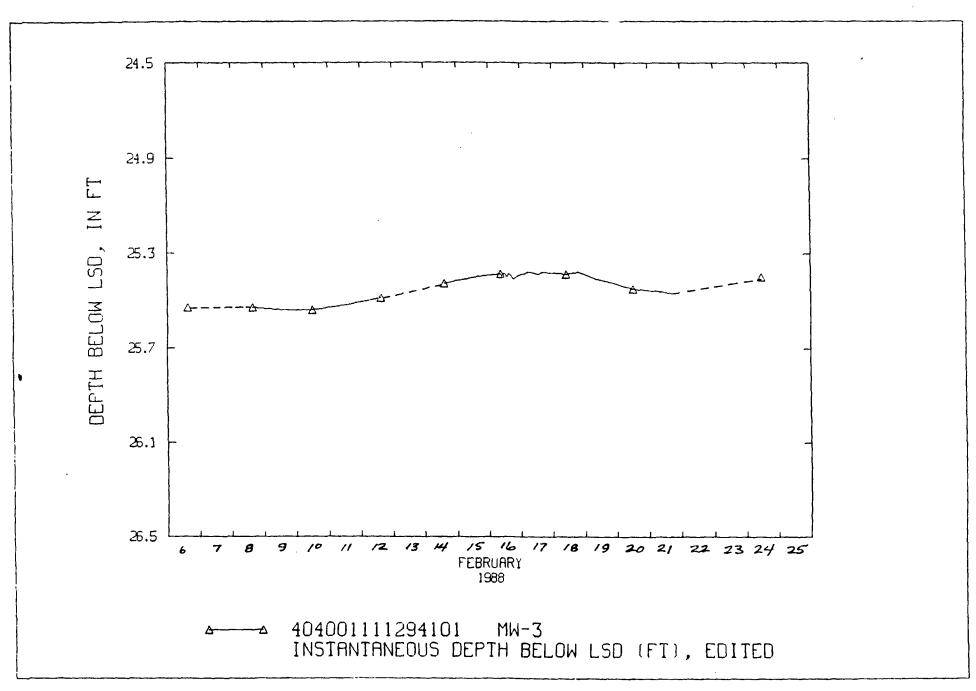


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

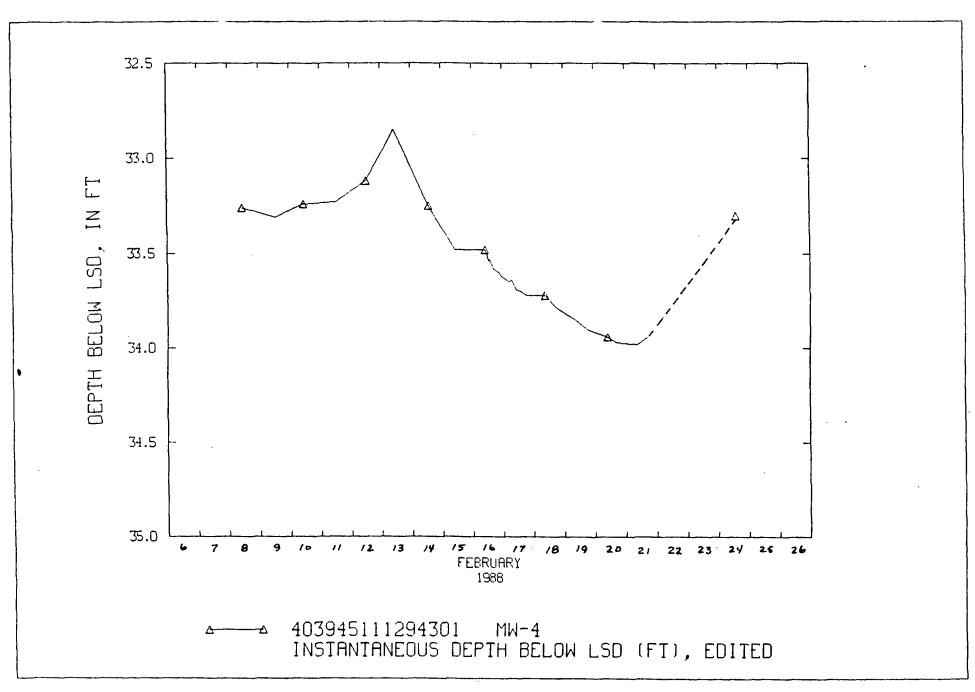


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

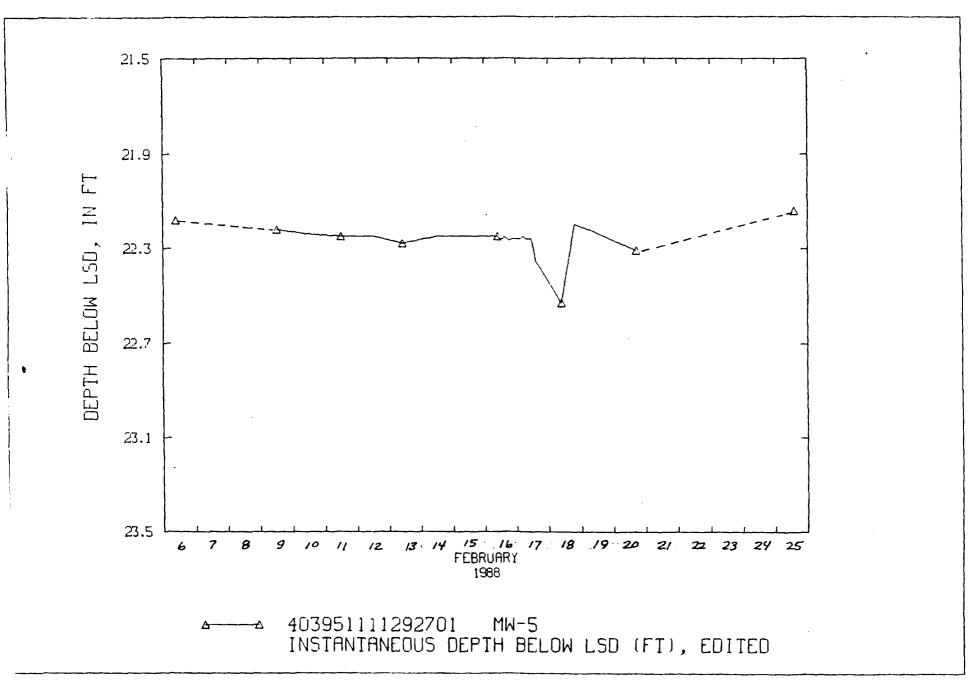


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

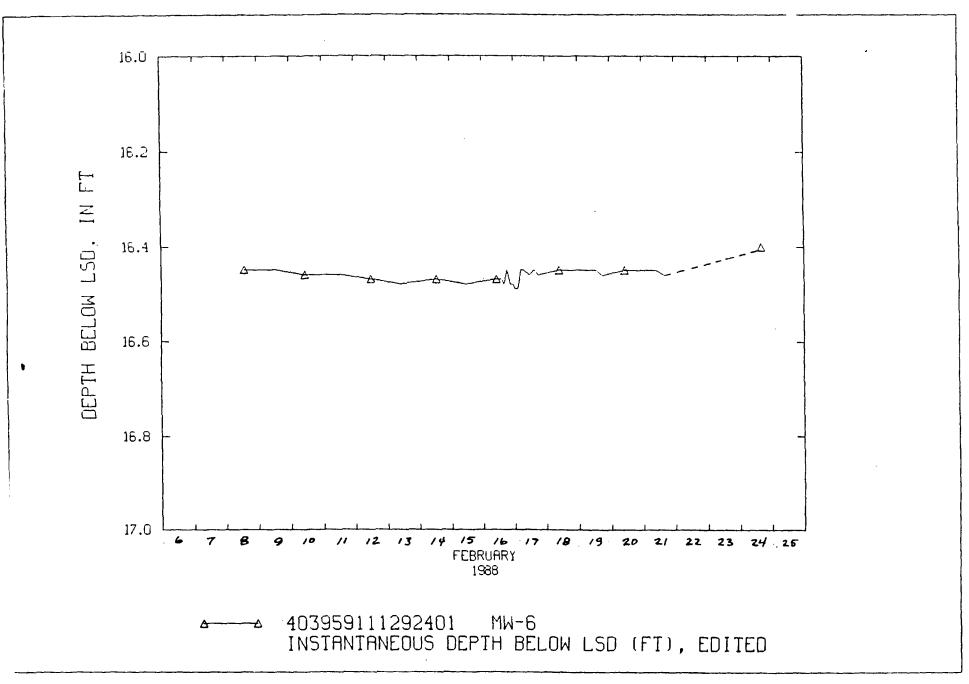


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

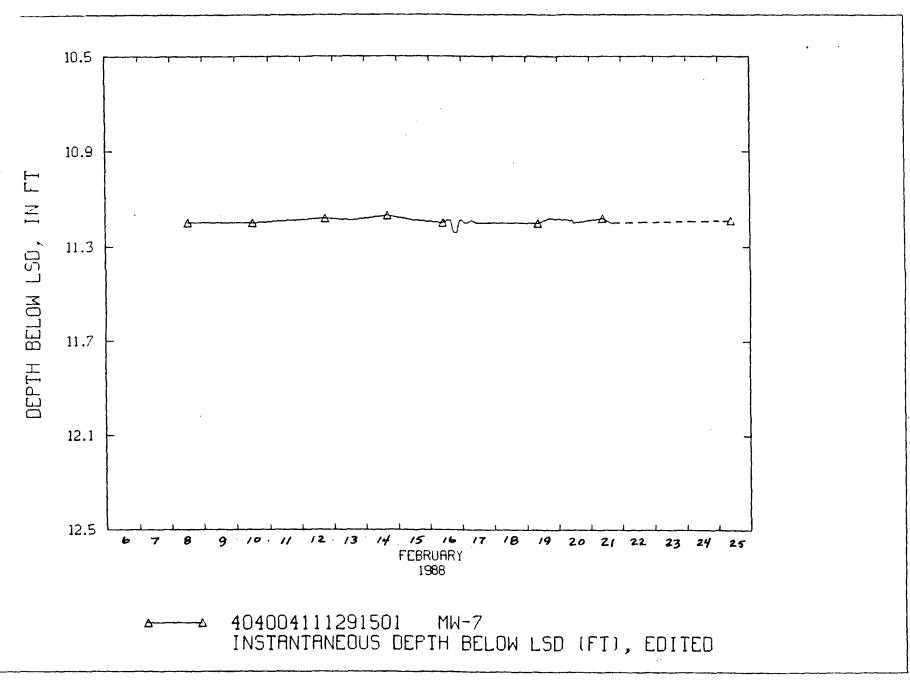


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

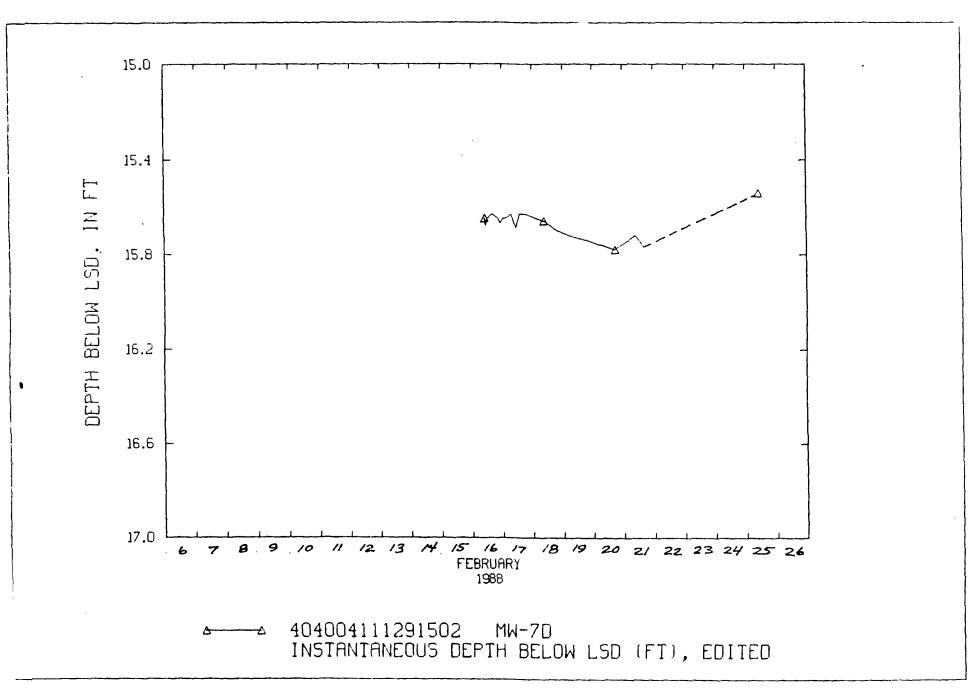


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

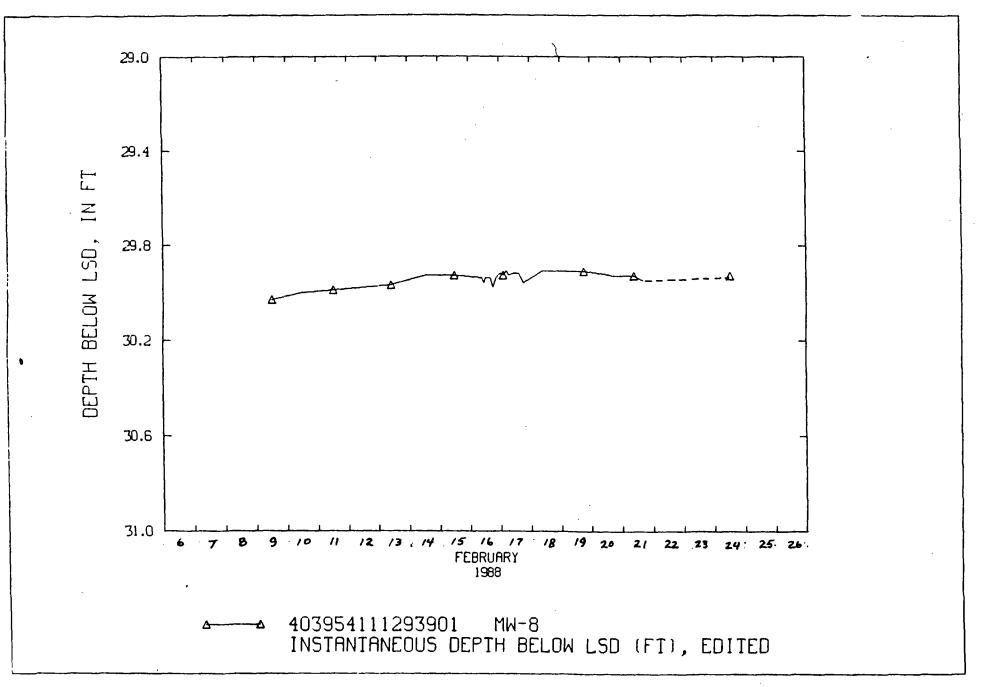


Figure 6.-Fluctuations during interference test (dashed where estimated). Continued

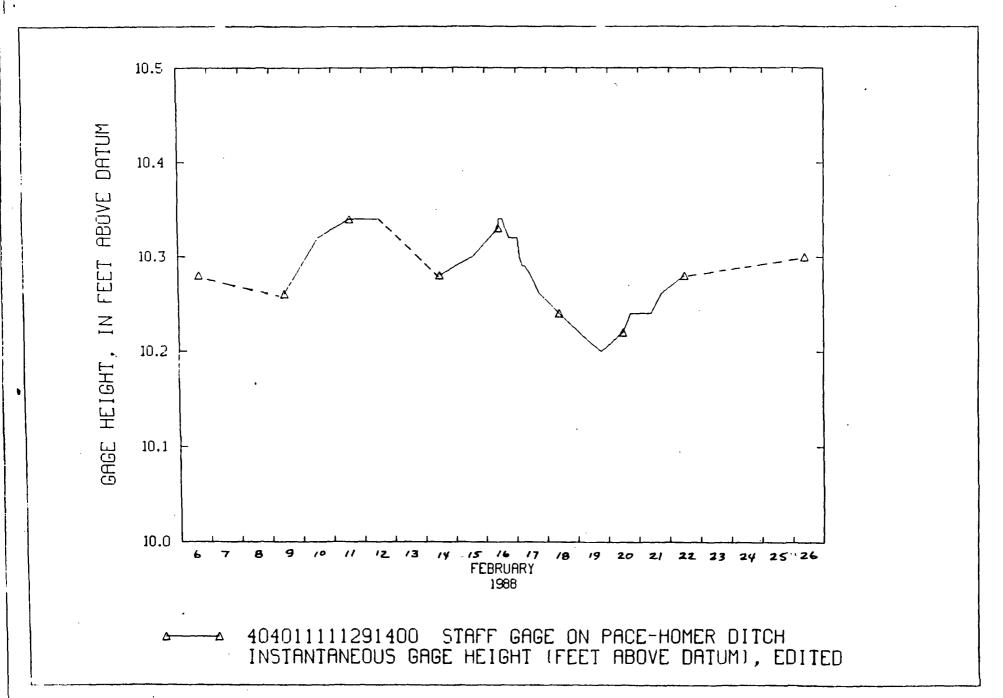


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

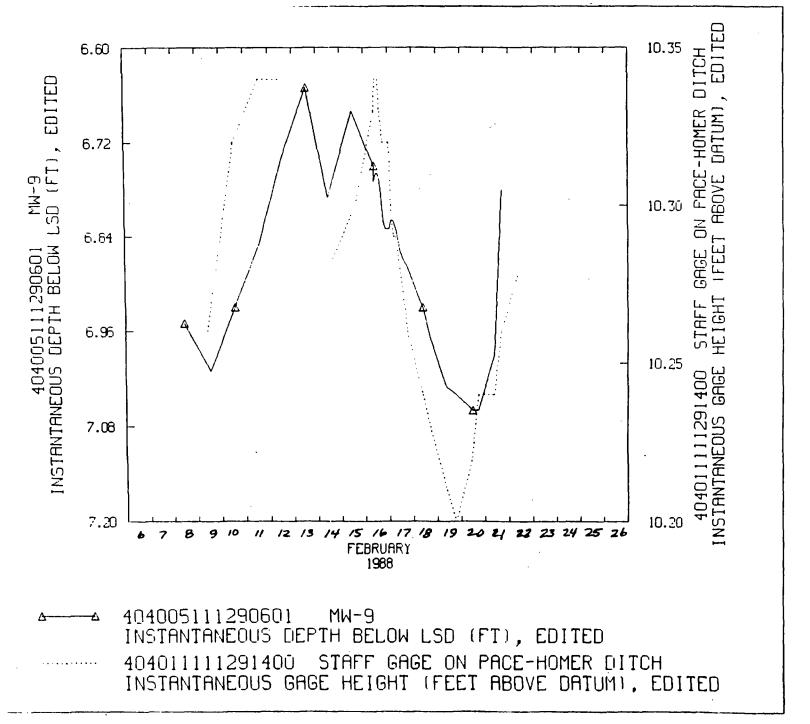


Figure 6.-Fluctuations during interference test (dashed where estimated)--Continued.

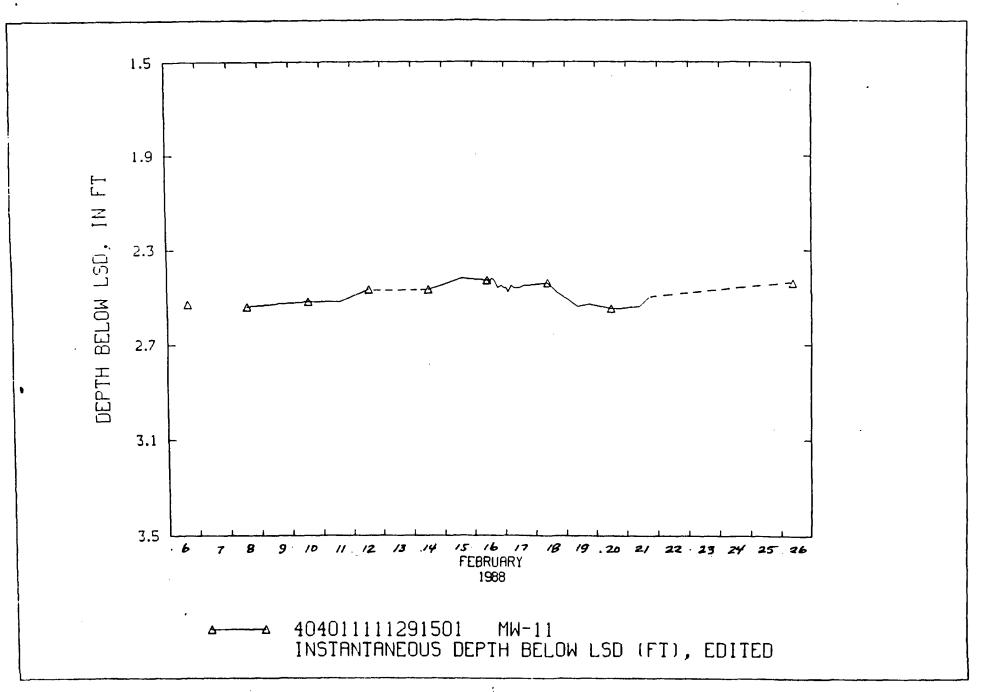


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

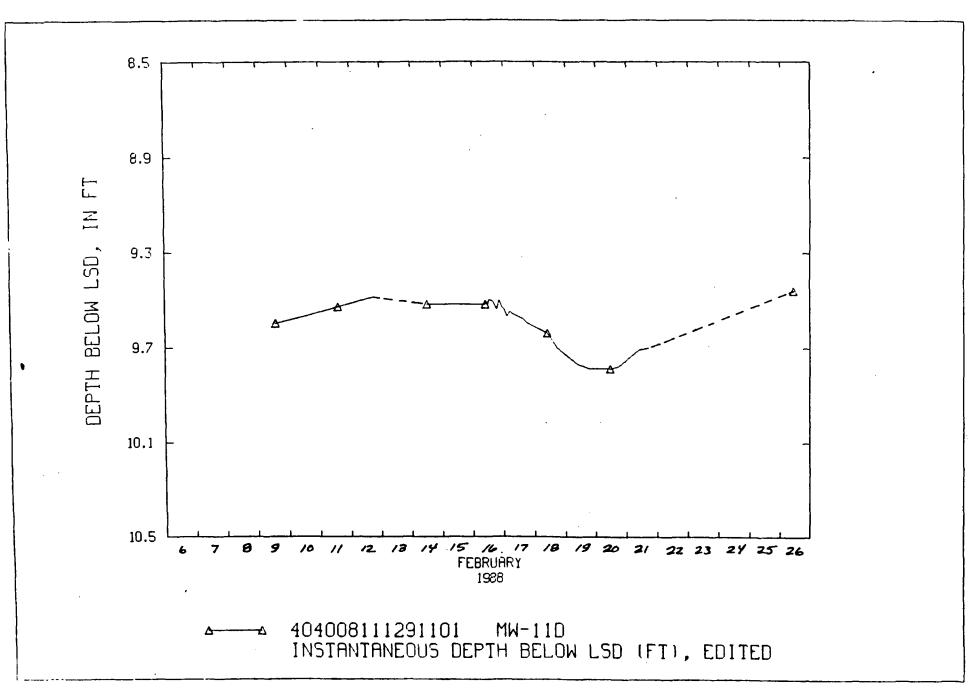


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

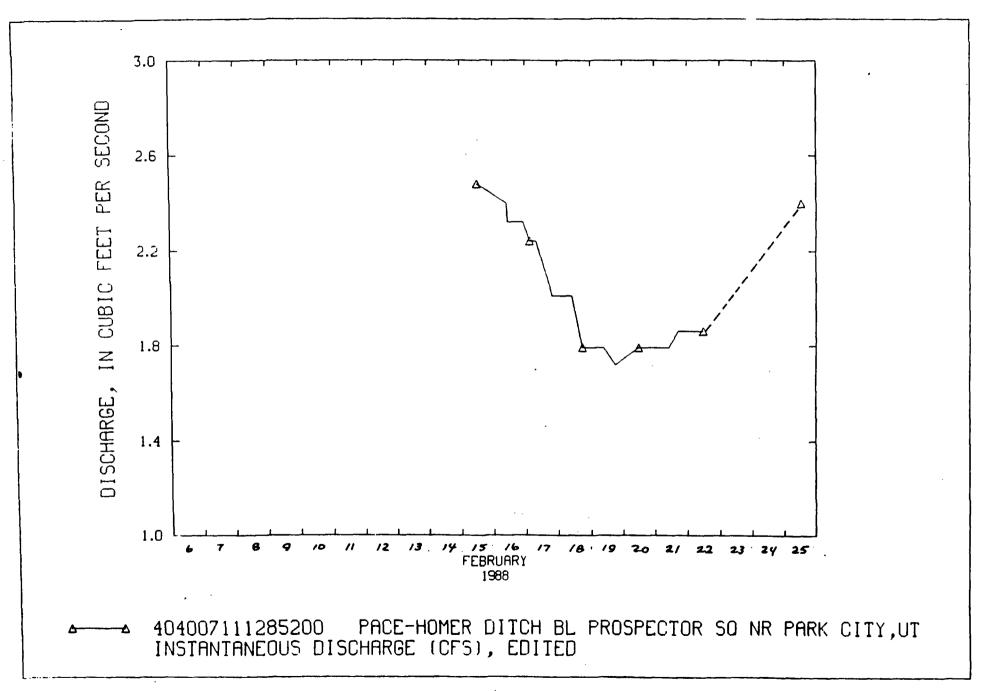


Figure 6.--Fluctuations during interference test (dashed where estimated)--Continued.

ATTACHMENT F
RESPONSE TO COMMENTS

250 EAST BROADWAY, SUITE 200, SALT LAKE CITY, UTAH 34111-2480 (801) 521-9255

August 23, 1988

Park City Municipal Corporation P.O. Box 1480 Park City, Utah 84060-1299

Attention: Mr. Ron Ivie

Dear Ron:

Attached are comments relating to the "Draft Groundwater and Surface Water Study Report, Silver Creek Tailing Site" August 1988 prepared by the Utah Department of Health and the U.S. Geological Survey. Two sets of comments are attached reflecting the independent evaluations of George Condrat and myself.

Very truly yours,

DAMES & MOORE

Peter F. Olsen

Associate

PFO/fl

cc: Mr. Brent Bradford, UBSHW Ms. Paula Schmittdiel, EPA

RECEIVED

AUG 23 1988

Ut " Dent of Viselith Bure? Surface to the groups Wasta

COMMENTS ON DRAFT GROUNDWATER AND SURFACE WATER STUDY REPORT SILVER CREEK TAILINGS SITE AUGUST 1988

These comments deal exclusively with the water quality portion of the study. Overall, the report does a very poor job of presentation and analysis of the water quality data. It is extremely difficult to obtain an overview and make independent evaluations of the interpretations and conclusions reached. The map presented as Figure 2 is of such small scale and so crowded that it is very difficult to locate wells and surface water sampling points and correlate results with sites. The tailings area is not delineated on this map. The only map which provides reasonable locational data for the wells was hidden in an attachment and on it one of the upgradient wells is misidentified (2D should be 12).

The data is presented as a mass in Tables 6 and 7 for surface water sampling results and in a 5-page fine-print table (Table 9) for ground water. Such presentation defies visualization and understanding. Graphical presentations need to be included such as Piper diagrams for the common ions to show variations in basic water chemistry (by well and with time) and areal plots of the concentrations of key metals.

It is noted that "data which did not match closely with other labs was flagged with a star and was not included in the statistical evaluation." How was such a match determined - simply by subjective evaluation or was some objective criterion applied? There are many sets of data included in Table 9 which are not flagged which do not "closely match" each other.

During submittal of quarterly results of EPA's CLP analyses, the data was in standard CLP format which indicates any qualifiers for each value presented. This format was not utilized in the report and as a result there is no way to determine if qualified data, including that which is bracketed, i.e., below CRDL, was used in making statistical comparisons. From previous submittals, however, it is obvious that it was.

Quality Assurance of the data is, in essence, not addressed. Presentation of the CLP results in standard format along with narrative indicating problem areas would be sufficient for EPA's analyses. Something similar is necessary for the USGS and State Health Laboratory data in order to permit evaluation of the precision and accuracy of these results. To simply state that both conduct their own QA programs and that such documents are kept on file and may be obtained upon request, provides no assurance of the quality of the data.

One specific QA area that needs to be discussed has to do with the detection limits for the various metals. These vary significantly among the three labs and within any one agency's lab(s) from round to round. Does the fact that EPA's splits were analyzed by "various contract laboratories" have anything to do with varying capabilities, different methodologies or varying CRDLs of the different labs?

In making the calculations for statistical comparisons, how were values below reported detection limits handled - by utilizing half the reported detection limit as the value?

While the use of the combined data from the three upgradient wells as "background" is appropriate, the use of the (presumably) combined data from "all other wells" as a downgradient value does not seem to be, since some of these "others," such as wells 2, 4, 5, 6 and 8 are in the middle of the site, not at its downgradient boundary.

Statistical evaluations were made separately for the data generated by each of the agencies. Whether this meets the intent of the Site Investigation Agreement which states that all validated (i.e., unqualified in our interpretation) be used is not clear and needs to be resolved. Since several CLP labs conducted the EPA analyses, another option may be to utilize the combined measurements of all three agency labs (eliminating outliers by an objective method).

Attachment D (still labeled as Appendix F) is taken directly out of the UBSHW regulations document. This is not an appropriate attachment since it deals with RCRA requirements, notes the 0.01 confidence level as per the Part 265 regulations, then in the formulas and tabular values uses t-values associated with the 0.05 confidence level. We assume that the 0.05 level was used but perhaps the 0.01 level is more appropriate in this situation. Since the Site Investigation Agreement does not specify the statistical test to be employed, justification for the use of Cochran's approximation of the Behrens-Fisher Students t-test needs to be presented. Simply because it is the one required in certain portions of the RCRA regulations does not mean that it is the most appropriate to use in this situation. This needs to be resolved among the participants in the Site Investigation Agreement.

The individual values (along with any qualifications of the data) used for each statistical comparison need to be clearly identified in a separate table and pertinent data for the comparison summarized. A presentation such as that in Table 11 does not provide sufficient information.

The concentrations of metals detected in the wells should be placed in better quantitative perspective to primary and secondary drinking water standards. For example, the highest levels of zinc detected (2,000-3,000 ug/l) are well below the secondary drinking water standard of 5,000 ug/l.

The term "release" is continually used in the water quality sections. This needs to be examined closely.

Comments by Peter F. Olsen Dames & Moore August 22, 1988

COMMENTS ON DRAFT GROUNDWATER AND SURFACE WATER STUDY REPORT SILVER CREEK TAILINGS SITE AUGUST 1988

SECTION 3.1

1st Paragraph

There is no evidence of glaciation of the valley at Prospector Square.

4th Paragraph

What information is available regarding the use of solvents and acids at the site?

5th Paragraph

To say Park City has plans to cover the tailings could be taken as a deliberate suggestion that the City has not acted at the site.

SECTION 3.4.1.2

The water table surface map in Figure 4 shows conditions only during April 1988. Were variations in the flow direction noted during other times of the year.

SECTION 3.4.1.4

2nd Paragraph

Infiltration of snow-melt and down-valley flow of ground water through the alluvium are an important cause of the ground water rise.

SECTION 3.4.1.5

How poor is the slug data? Is it reliable at all? The report should include the basic data and should show the curve matches.

SECTION 5.0

Is there aquifer interconnection between the alluvium under the Prospector Square site and Park Meadows well? This was an important study objective.

SECTION 8.1

How was the volume of tailings calculated (to 4 significant figures)? Apparently tailings were identified in only three borings (see Appendix A) with a total thickness of 1.0, 5.3 and 1.6 feet, respectively. What is assumed areal extent and thickness? Concentrations of chromium and manganese are within the range typically encountered in western soils.

SECTION 8.2

2nd Paragraph

What is background?

3rd Paragraph

What does significant mean? This could be confused with statistically significant.

4th Paragraph

Well MW-10 is close to Silver Maple Claim and may be affected by that site. A more thorough evaluation of common ion chemistry may be more revealing than looking at trace metals. Sulfate is generally a good indicator of contamination from mineral deposits due to its generation by oxidation of sulfides. Report should contain Piper diagrams to aid evaluation of common ion chemistry. Concentration maps of sulfate, chloride and other constituents would also aid interpretation.

SECTION 8.3

Only zinc showed to be consistently above background in ground waters downgradient of the site according to the report. The occasional findings of significant increases for arsenic, cadmium, chromium, and manganese, are often contradicted by data for other agencies taken at the same time or by subsequent sampling rounds. Data for trace metals are subject to large variations due to sampling and analytical variability and the occasional significant differences may be due solely to this. Zinc and other parameters show wide variations between splits of individual samples.

Questions - How were "less than" values handled in statistical comparisons? Have evaluations been made to statistically identify individual wells and sample splits which are outliers indicating sampling or analytical error?

2nd Paragraph

"Another CERCLA site" - Is State suggesting Prospector Square is a CERCLA site ?

SECTION 8.4

Variations of up to 50 times occur within splits of individual samples.

SECTION 9.1

What is the meaning of "significant" in Item 2 ?

SECTION 9.2

Item 1 - See comment on Section 8.3

Item 2 - The average cadmium concentration of 0.018 mg/l was barely over the drinking water standard of 0.010 mg/l.

Item 3 - Does not say whether interconnection occurs.

SECTION 9.3

Item 1 - See comment in regard to Section 8.4

Item 2 - Cadmium exceeded the drinking water standard in one sample location (near Wyatt Earp Drive) in one sampling round only. Cadmium exceeded the standard in two of the three splits only, and only exceeded the standard by a small amount. The USGS split was over 5 times lower than the other splits values and was well below the standard. The stream location below the location near Wyatt Earp Drive met the standard for cadmium.

<u>Tables 1 and 2</u> - An elevation of a clearly identifiable elevation datum (such as top of casing) should be reported for future monitoring. A surface elevation measure to 0.01 feet is very difficult to reconstruct unless there is a benchmark.

Well logs do not identify any tailings

<u>Table 4</u> - Table should clearly identify what is being compared, should show population means and variances. Table should include evaluation of outliers, individual samples, and splits which are significantly different than the upgradient or downgradient populations.

Figures 1, 2, 4 and 6 - Should show north-arrows.

Figure 2 - Is difficult to read and at a rather small scale. Why not put it on a standard U.S.G.S. quadrangle map?

Figure 5 - Should show months on x-axis and break between 1987 and 1988. Plots should be on sample vertical scales and same horizontal scales.

Figure 6 - What is this supposed to show?

Comments by George W. Condrat Dames & Moore August 22, 1988

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY **REGION VIII**

999 18th STREET - SUITE 500 DENVER, COLORADO 80202-2405

SEP 1 1993

Ref: 8HWM-SR

Kent Gray

Utah Department of Health

P.O. Box 16690

Salt Lake City, Utah 84116-0690

Dear Kent:

Enclosed are EPA's comments regarding the draft Ground Water and Surface Water Study Report for the Silver Creek Tailings site. Although the report is fairly complete, several issues should be addressed before finalizing the report. If you or your staff have any questions regarding our comments, please feel free to contact me at (303) 293-1518.

I am planning on the meeting the morning of September 8th with the State and Park City to go over the comments to the report. Please let me know if plans for the meeting change.

Sincerely,

Yould Schmittdell for David A. Schaller, Chief

Site Evaluation Section

Enclosure

SEP 6 1988

EPA COMMENTS ON DRAFT GROUND WATER AND SURFACE WATER STUDY REPORT SILVER CREEK TAILINGS SITE

GENERAL

- 1. The term "significant" is used throughout the report in a variety of contexts, some statistical and some not. Clarification is needed as to how the term is being used in the report, since the term has a specific meaning with reference to environmental impacts.
- 2. The report should include a detailed discussion of target populations for each pathway, including number of wells and their uses and zones of completion as well as surface water uses and points of diversion.
- 3. In several portions of the report, additional discussion is needed to explain what was done and how. The discussions in many instances are too general and do not allow the reader to reach the same conclusions. Specific examples of insuficient information and discussion are identified in the rest of the comments.

GROUNDWATER

- 4. Section 3.4.1.5, Slug Test: The model that was used for analyzing the slug test as stated in the report is for confined isotropic conditions. In the first paragraph it stated that the alluvial aquifer is an anisotropic, unconfined aquifer. More explanation is needed as to why the methods used to determine hydraulic conductivities were considered appropriate when the assumptions of the methods can not be met. The Hrsorlev basic time lag method for approximating soil permeability is widely used for alluvial conditions that are heterogenous and unconfined in nature.
- 5. <u>Section 5.0, Interfernce Test:</u> Page 12, second paragraph, line 7 the depth of 96 feet should be changed to 95 feet to match Table 1 in the well log for PS-MW-5D in Attachment A.
- Page 13 the statement that small fluctuations in wells PS-MW-1S, PS-MW-1D, PS-MW-2, PS-MW-3, PS-MW-4, PS-MW-7D and PS-MW-11D may have been due to pumping of the Park Meadows well does not appear to be substantiated by the hydrographs included in the report. The statement referring to the influence of the Park Meadows well and to recharge and surface runoff needs further explanation.
- 6. Section 8.2, Groundwater Data, Page 15, 2nd Paragraph: The discussion is unclear. Perhaps a sentence or phrase is missing.

7. More information is needed in Section 8.2 as to how upgradient and downgradient wells were determined. What method was used to determine an upgradient/downgradient well.

TAILINGS CHARACTERIZATION

- 8. Section 4.3.3,: No mention is made of the E.P. toxicity results of the subsurface soil cores collected of the tailings which indicate some of the samples meet the criteria of a hazardous waste. This information should be provided in the report and included in the findings. Also, a more detailed discussion should be included regarding the type of tailings and their extent found during drilling.
- 9. A discussion of the geochemical character of the tailings should be provided under section 8.1 on Waste Characterization, to help explain the results of the groundwater sampling effort. An understanding of the geo-chemical form of the tailings would support the presence or lack of particular elements in the groundwater.

SURFACE WATER

- 10. Section 8.4, Surface Water/Sediment Data: While Silver Creek sediment is heavily contaminated, the surface water release question still remains inconclusive, since the most upgradient sampling station is in the immediate vicinity of tailings. This was verified by the attempt to install a monitoring well at this location in November 1987. This effort encountered a significant thickness of tailings near the surface that have likely eroded into the creek as the sediment data shows. The furthest extent of contamination downstream is presently unknown.
- 11. Section 9.3, Surface Water: All comparisons in the report to background surface water or sediment are likely to underestimate releases. The conclusions should reflect this underestimate of releases to the surface water pathway.

DISCUSSION OF ANALYTICAL RESULTS

- 12. A more detailed discussion of the analytical results by well, parameter, and round is needed with comparisons of wells and rounds. Also, more extensive discussion of the statistical analyses conducted for the groundwater data should be provided, including why the Student T-test was selected and whether all the statistical assumptions were met with the data base. The discussion should also include the approach used to deal with outliers, etc.
- 13. More discussion is needed on the magnitude of the statistically significant releases that would help clarify the degree of metal releases from the tailings. An explanation as to

why well PS-MW-10 was not included in the statistical analyses is also needed.

14. An explanation as to why statistical analyses were not done on the surface water data should be given. Again, the discussion on the analytical results for the surface water and sediment samples is fairly general; more detail is needed.

QUALITY ASSURANCE

15. A more detailed discussion of the quality assurance procedures followed and the results of the quality assurance reviews for each set of data from each lab (EPA, USGS, and UDH) should be included in the report, i.e. spike recoveries, duplicates, blind samples, etc.

Silver Creek Tailings Site Groundwater/Surface Water Study Report

Response to Comments By Peter F. Olsen

Page 1, first paragraph:

Enclosed will be a revised Figure 2 which shows sample locations more clearly. FIT has designated MW-12 as MW2D for their records.

Page 1 second paragraph:

Enclosed are the revised Tables 6,7 and 9.

Page 1, third paragraph:

The date were flagged by subjective evaluation. Most if not all data, which did not match closely, have been flagged.

Page 1, fourth paragraph:

All the qualified data are usuable unless rejected. Data from all rounds of sampling (with appropriate qualifiers) will be included in a separate attachment to the report.

Page 2, first paragraph:

The following steps were taken regarding the data quality assurance:

- 1. A detailed sampling plan (with input and consent from all parties) was prepared and followed during the field activities.
- 2. U.S. EPA Region VIII, Environmental Services Division conducted field audit and concluded that data gathered during this investigation should be valid and defensible.
- 3. Adequate number of field blanks, decomination blanks and duplicate samples were collected for each round of sampling. After the first round of groundwater sampling, performance evaluation (spike) samples were submitted to the labs with each set of samples. Analytical results of these quality control samples indicate that each lab's performance was adequate with the exception of cadmium results from the State Health Lab.
- 4. All CLP data were evaluated according to the EPA's functional guidelines for data validation and deemed acceptable. Data validation summaries will be included in an attachment to the report. State Health Lab is willing to

provide percision and accuracy data for each round of sampling. We will request USGS Lab to do the same. Percision and accuracy data will also be included in an attachment.

Page 2, second paragraph:

The detection limits depend upon various factors such as sample matrix, analytical method, lab proficiency and instrument used. Each analytical method has a range for detection limit and the CLP contract specifies required detection limit called (CRDL). These detection limits are above the instrument detection limit. The defference between the instrument detection limit and the method or contract detection limit provides opportunity for various labs to lower their reporting detection limit. This results in detection limits variability reported by different labs.

Page 2, third paragraph:

We intended to drop less than values from statistical calculations but due to the small sample size these values were used as such.

Page 2, fourth paragraph:

The wells which are hydraulically upgradient of the tailings area were designated as upgradient. The wells which are located on the tailings area can potentially be influenced by the tailings and were designated as the downgradient wells.

Page 2, last paragraph and page 3:

The criteria to determine a release under superfund process does not involve use of any statistics. It simply compares the downgradient contaminants levels against the upgradient ones. During the work plan negotiations references were made to RCRA requirements for statistical evaluation. This was the rationale for using the student t-test specified under RCRA.

Only validated date (which includes qualified data) was used. Each round of sampling was compared for each lab separately. Combining the results from different labs would increase the data variability.

The following data were not used in statistical evaluation:

- 1. Data collected from MW-10
- 2. Data collected from DR1 and DR2
- 3. Incomplete data set for a rounding a sampling (collected USGS occasionally)
- 4. Data flagged with a star (*).

Response Comments By George W. Condrat

Section 3.1, first paragraph:

If there is no evidence of glaciation of the valley, this word can be deleted.

Section 3.1, fourth paragraph:

We have documentation in our files that Pacific Bridge company reworked the tailings on-site using acids and solvents in 1940's.

Section 3.1, fifth paragraph:

Park City has covered most of the tailings. It is stated that Park City is planning to cover remaining exposed tailings area.

Sections 3.4.1.2, 3.4.1.4, 3.4.1.5:

Referred to USGS

Section 8.1

FIT calculated the volume of tailings based upon average thickness of tailings as five (5) feet in the 45 acres Prospector Square area.

Section 8.2, second paragraph:

Monitoring wells ls, and ld and l2 represent background wells for this site.

Section 8.2, third paragraph:

Significant means higher than background.

Section 8.2, fourth paragraph:

MW-10 is located downgradient of Prospector Square and is impacted by this site. Sulfate chloride and other anion provide useful information, the constituents of concern in this study are metals.

Section 8.3:

As stated earlier less than values were used as such in statistical evaluation. The date appear to match fairly well except for the data flagged as Star(*) and not used for statistical evaluation.

Section 8.3, second paragraph:

Yes, Prospector Square is a CERCLA site but not an NPL site.

Section 8.4:

Data presented as provided by each lab.

Section 9.1:

Significant means higher than average soil values found in the Western U.S.

Section 9.2:

Item 1 - Response in Section 8.3.

Item 2 - No response is required.

Item 3 - Referred to USGS.

Section 9.3:

Item 1 - Response in Section 8.4.

Item 2 - Both filtered and unfiltered sample results should be reviewed in drawing conclusion.

Talbes 1, 2 and 4 - Referred to USGS.

Figures 1,2, 4, and 6 - Will show north arrows

Figure 2 and 5 - Referred to USGS.

Figure 6 - Shows site location on a USGS map.

MS/clq BSHW/7169U/1-4

Response Comments By George W. Condrat

Section 3.1, first paragraph:

If there is no evidence of glaciation of the valley, this word can be deleted.

Section 3.1, fourth paragraph:

We have documentation in our files that Pacific Bridge company reworked the tailings on-site using acids and solvents in 1940's.

Section 3.1, fifth paragraph:

Park City has covered most of the tailings. It is stated that Park City is planning to cover remaining exposed tailings area.

Sections 3.4.1.2, 3.4.1.4, 3.4.1.5:

Referred to USGS

Section 8.1

FIT calculated the volume of tailings based upon average thickness of tailings as five (5) feet in the 45 acres Prospector Square area.

Section 8.2, second paragraph:

Monitoring wells is, and id and is represent background wells for this site.

Section 8.2, third paragraph:

Significant means higher than background.

Section 8.2, fourth paragraph:

MW-10 is located downgradient of Prospector Square and is impacted by this site. Sulfate chloride and other anion provide useful information, the constituents of concern in this study are metals.

Section 8.3:

As stated earlier less than values were used as such in statistical evaluation. The date appear to match fairly well except for the data flagged as Star(*) and not used for statistical evaluation.

Section 8.3, second paragraph:

Yes, Prospector Square is a CERCLA site but not an NPL site.

Section 8.4:

Data presented as provided by each lab.

Section 9.1:

Significant means higher than average soil values found in the Western U.S.

Section 9.2:

Item 1 - Response in Section 8.3.

Item 2 - No response is required.

Item 3 - Referred to USGS.

Section 9.3:

Item 1 - Response in Section 8.4.

Item 2 - Both filtered and unfiltered sample results should be reviewed in drawing conclusion.

Talbes 1, 2 and 4 - Referred to USGS.

Figures 1,2, 4, and 6 - Will show north arrows

Figure 2 and 5 - Referred to USGS.

Figure 6 - Shows site location on a USGS map.

MS/clq BSHW/7169U/1-4

RESPONSE TO COMMENTS BY U.S. ENVIRONMENTAL PROTECTION AGENCY

GENERAL:

- 1. The term significant has been changed or deleted from the text of the report to avoid confusion.
- Discussion of target population for surface and groundwater pathways has been added to the report.
- 3. Additional discussion and clarification has been added to the report where applicable.

GROUNDWATER:

4. The slug test data were analyzed using methods described by Bouwer and (1976) and Cooper and others (1967). The solution described by Bouwer and Rice (1976), which was developed for unconfined condition is based on the assumption that the aquifer is isotropic, the solution omits storage in the aquifer, and treats the water table as a fixed, constant-head boundary, The solution described by Cooper and others (1967) is based on the assumption that aquifer is confined, isotropic and not leaky.

The conditions to which above models are applicable exist in the study area.

5. Interference Test: The suggested correction has been made in the text.

Page 13 - there are insufficient data to identify specific causes and offer further explanation.

- 6. Text has been revised to clarify the discussion.
- 7. Monitoring wells (1S, 1D and 12) which are hydraulically upgradient from the site are designated as upgradient wells. All other wells which are on-site and can be impacted from the tailings are designated as downgradient wells.

TAILINGS CHARACTERIZATION:

- 8. E.P. Toxicily analyses were not done as part of the approved work plan. These analyses were conducted to determine the proper disposal drilling/mud-cuttings. However, E.P. Toxicity analysis is included in attachment G.
- It is nor clear what is meant by this comment.

SURFACE WATER:

- 10. During the drilling of monitoring well_at_this location very little tailings were encountered. This was confined by Jim Mason of U.S. Geological Survey. It is difficult to establish a background location in an area where tailings are ubiquitously present.
- Same response as states above in #10.

DISCUSSION OF ANALYTICAL RESULTS:

- 12. A discussion of analytical results for each round is provided. However, it is difficult to discuss each monitoring well separately. Analytical results for each well are included in Table 9. Rationale for selection of T-test has been added to the report.
- 13. MW-10 was not included in the statistical analysis because it is located on Silver Maples Claim property (another CERCLA site).
- 14. Statictical analysis was not done on the surface water results due to insufficient data. The sample size is too small for statisical evaluation.

QUALITY ASSURANCE:

15. Discussion on quality assurance has now been included in the report.

MS/clq 7339U-1 thru 2 ATTACHMENT G

E. P. TOXICITY DATA

TABLE 1

TAILINGS CHARACTERIZATION SAMPLES SUBSURFACE SOILS (ug/1) EP TOXICITY LEACHING TEST PROSPECTOR SQUARE PARK CITY, UTAH

SAMPLE NUMBER TRAFFIC NUMBER SAMPLE INTERVAL	PS-MW-3 MHH-057 1.0-2.0'	PS-MW-4 MHH-058 1.0-1.5'	PS-MW-5 MHH-053 1.0-1.5'	PS-MV-5 MHH-054 4.0-5.5'		PS-NW-5 MHH-056 7.5-9.0'
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	[87]j 34uj 10uj [22] 1.5uj 583j 32,900 3.1uj 6.8u 327 17uj 5640 [1920] 2410j 0.2uj 24u [2020] 5.0uj [6.3]j [769] [4.8]r [13] 85,900r	[56]j 34uj 1.2uj 360 1.5uj 29j 388,000 3.1uj 6.8u 2.1u 17uj 51j 7400 292j 0.2uj 24u [2380]j 2.0uj 2.2uj [3600]j 10r [12] 1160	[66]nj 34uj 10uj [138] 1.5u 675j 165,000 3.1uj 6.8u 179j 17uj 2370 [2870] 2510j 0.2u 24u [1740]j [3.0]j [8.6]j [3.2]j 2.1r [7.7]	[196]j 34uj 10uj [61] 1.5uj 675j 150,000 3.1uj 6.8u 158j [92]j 2170j [2280] 2240j 0.2uj 24u [1800]j 2.0j [8.1]j [295] 2.1r [6.6]	[89]j 34uj 10uj [82] 1.5uj 608j 184,000 3.1uj 6.8u 100j 17uj 1790j [2850] 2530j 0.2uj 24u [2090]j 2.0uj [6.0]j [414]j 2.1r [6.6] 504,000	[103]j 34uj 10uj [21] 1.5uj 16/0j 25,900 3.1uj 6.8u 324j 17uj 1890j [1960] 2550j 0.2uj 24u [1440]j 2.0uj [9.5]j [311]j 2.1r [11] 84,500
Zinc	03,7001	1100	63,400	61,800	204,000	04920

^{[] -} indicated concentation detected at less than contract required detection limits.

u - indicates - undetected at this concentration

uj - detection limit estimated because not all quality control criteria were

j - estimated value; not all quality control criteria were met

r - rejected data

TABLE 1

TAILINGS CHARACTERIZATION SAMPLES SUBSURFACE SOILS EP TOXICITY LEACHING TEST (ug/1) PROSPECTOR SQUARE PARK CITY, UTAH

SAMPLE NUMBER TRAFFIC NUMBER SAMPLE INTERVAL	MHH-059	PS-MW-9 MHH-060 1.5-2.0'	MHH-061	EP TOXI- CITY STANDARD	EPA HAZ- ARDOUS NUMBER
Aluminum	[53]j	[27]uj	[99]j		
Antimony	[39]j	[34]uj	34 u j		
Arsenic	10uj	1.2uj	10uj	5 000	D0004
Barium	•	[69]	[83]	100,000	D 0005
Beryllium	1.5uj	1.5uj	1.5uj		
Cadmium	277j	834j	643	1000	D0006
Calcium	204,000	•			
Chromium	3.1uj	3.1uj	3.1uj	5000	D0008
Cobalt	6.8u		[14]	•	
Copper	232j	7 8 j	230j		
Iron	17uj	17uj	17 u j		
Lead	•	1970j	1760j	5000	
Magnesium	•	6240	[4460]		
Manganese	4450j	3100j	6500j		
Hercury	0.2uj	0.7j	0.2uj	200	D0009
Nickel	24u	24u	24u		
Potassium		180uj	[712]j		
Selenium	2.Ouj	5.0uj	2.0uj	1000	D0010
Silver	2.2uj	2.2uj	[2.4]uj	5000	D0011
Sodium	[1900]		[1090]		
Thallium	10r	10r	2.1r		
Vanadium	[4.9]	2.9u	[3.6]		
Zinc	14100	52,100r	44,000		

^{[] -} indicated concentation detected at less than contract required detection limits.

u - indicates - undetected at this concentration

uj - detection limit estimated because not all quality control criteria were met

j - estimated value; not all quality control criteria were met

r - rejected data

TABLE 2 EP TOXICITY ANALYTICAL RESULTS, (ug/l) SUBSURFACE BOREHOLE SAMPLES PROSPECTOR SQUARE PARK CITY, UT CASE #3317H

	ВН-01 3.5'-4.0' МНН-092	4.0'-5.5'	0.0'-2.0'	BH-02 2.0'-4.0' MHH-094	
Aluminum	78u	78u	78u	78 u	78 u
Antimony	50u	50u	50u	50u	96
Arsenic	10u	10u	10u	10u	10u
Barium	[108]	[164]	[27]	23u	23u
Beryllium	2u	2u	2u	2u	2u
Cadmium	251	178	792	904	1090
Calcium	19100	2 96 00	6 61 000	655000 _j	674000Ĵ
Chromium	22	9u	9 u	9u	9u
Cobalt	20u	20u	[20]	20u	20u
Copper	9 u	9u	53	221	578
Iron	113	43u	[43]	43u	43u
Lead	5.82 j	154 յ	291 0 j	2540 j	2440j
Magnesium		[3730]	[3360]	11300	7050
Manganese	169 j	379 j	39 9 0 j	5900	7330
Mercury	0.2u	0.2u	1.3	2.5j	0.2j
Nickel	25u	25u	25u	6 8 j	25u
Potassium	[4550]	[4370]	[1210]	[1050]	[1170]
Selenium	5u	5 u	5 u	5u	25u
Silver	8u	8u	8u	8 u	8u
Sodium	[4390]	[3820]	[2010]	7 19 0	7 39 0
Thallium	10u	10u	10u	10u	10u
Tin	38u	3 8u	3 8u	3 8u	38u
Vanadium	11u	11u	11u	11u	11u
Zinc	12900	10100	96500	102000	108000

^{[] -} indicated concentation detected at less than contract required detection limits.

u - indicates - undetected at this concentration

uj - detection limit estimated because not all quality control criteria were

j - estimated value; not all quality control criteria were met

r - rejected data

TABLE 3
(SOLUBILITY CONSTANTS) PREDICTED ZINC
CONCENTRATIONS (ug/l) VERSUS pH

log Kg	Zn ^{z+} 11.2	ZnOH ⁺ 2.2	ZnCO ₃ 7.95	
pH 5.5	130,000	205,550	10,183	
pH 6.5	10,980	72,172	315	
pH 7.0	2,740	42,766	45	

87/10/27 17:33

PARK CITY MW-1D BUREAU OF SOLID AND HAZAR DOUS WASTE

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: PARK CITY MW-1D

Site ID: CW87123 Source: 00

Cost Code: 365

Lab Number: 8704589 Type: 40

Sample Date: 87/08/03 Time: 12:35

Tot. Cations:

Tot. Anions: me/l Cations:

Grand Total: me/l Anions:

Date of Review and QA Validation

Inorganic Review: 87/10/27

Organic Review:

Radiochemistry Review: 87/10/27

Microbiology Review:

Laboratory Analyses

T-Arsenic	47.0	ppm	f-Barium	110.0	ppm
T-Cadmium	6	ppm	T-Chromium	100.0	ppm
T-Copper	35.0	ppm	ſ−Iron	24000.0	mag
T-Lead	110.0	ррш	T-Manganes	880.0	ppm
Mercury	0.089	ppm	T-Selenium	<30.0	ррт
T-Silver	<6.0	ppm	T-Zinc	160.0	ppm
Arsenic HW	NO	ppm	Barium HW	NO	ppm
Cadmium HW	NO	ppm	Cr (HW)	NO	ррш
Lead (HW)	NO	mqq	Mercury HW	NO	ppm
Se (HW)		ppm	Silver HW		ppm
% Solids	81.3				

Approved by:

> Onan

PROSPECTOR SQUARE M.SLAM BUREAU OF SOLID AND HAZARDOUS WASTE

E.P. TOXICITY T.M.

MW-1

JBO Pag∈

UTAH STATE HEALTH LABORATORY

00

Environmental Chemistry Analysis Report TAILINGS

PROSPECTOR SQUARE Description:

Site ID: Source:

Cost Code: 365

8704125 Lab Number: Type: 50

Sample Date: 87/07/16 Time:

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

T-Arsenic	6.0	ppm	T-Barium	34.0	ppm
T-Cadmium	13	ppm	7-Chromium	50.0	ppm
T-Lead	110.0	ppm	1-Manganes	500.0	ppm
Mercury	<1.0	ppm	T-Silver	1.3	ррт
T-Zinc	250.0	ppm	Arsenic HW	<0.2	ppm
Barium HW	0.093	ppm	Cadmium HW	<0.05	ppm
Cr (HW)	<0.03	ppm	Lead (HW)	<0.2	ppm
Mercury HW	<0	ppm	Se (HW)	<0.2	ррт
Silver HW	0.01	ppm	% Solids	94.0	

Approved by:

PARK CITY MW-1 M.SLAM BUREAU OF SOLID AND HAZARDOUS WASTE

E.P. TOXICITY T.M.

MW-1 LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY MW-1 Description:

Site ID: CW87160 Source: 00

Cost Code: 365

8704099 Lab Number: Type:

Sample Date: 87/07/15 Time: 14:30

Tot. Cations:

Tot. Anions:

me/l Cations: me/l Anions: Grand Total:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

T-Arsenic	13.0	ppm	T-Barium	480.O	ррпп
T-Cadmium	21	ррт	T-Chromium	115.0	ppm
T-Lead	170.0	ppm	T-Manganes	4800.0	ppm
Mercury	<2.0	pprn	T-Silver	5.0	ppm
T-Zinc	310.0	ppm	Arsenic HW	<0.2	mqq
Barium HW	0.57	ppm	Cadmium HW	<0.05	ppm
Cr (HW)	<0.03	ppm	Lead (HW)	<0.2	ppm
Mercury HW	<0	ppm	Se (HW)	<0.2	ppm
Silver HW	<0.01	ppm	%SOLIDS	8.2	

Approved by:

JBO Page:

RECEIVED

JUL 2 n 1987

Utah Dept. of Health Bureau of Solid & Hazardous Waste

PROSPECTOR SQUARE MW-1 M.SALM BUREAU OF SOLID AND HAZARDOUS WASTE

> MW-1TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PROSPECTOR SQUARE

MW-1

Site ID: Cost Code:

365

Lab Number:

8704124 87/07/16 Type:

50

00

Date of Review and QA Validation 87/07/17

Inorganic Review: Organic Review:

Sample Date: Tot. Cations: Tot. Anions: Grand Total:

me/l Cations:

Time:

Source:

Radiochemistry Review: 87/07/17

me/l Anions:

Microbiology Review:

Laboratory Analyses

 $\langle 10.0 \text{ ppm} (\langle \cdot \rangle^2)$ T-Arsenic 17 ppm (+3%) T-Cadmium 77.0 ppm (1.6) T-Lead Mercury <1.0 ppm (<:i) T-Zinc 170.0 ppm (3.6)

T-Barium T-Chromium T-Manganes T-Silver % Solids

100.0 ppm (2.2) 73.0 ppm (i-5) 980.0 ppm (2.6) 2.0 ppm (104) 83.3

Approved by:

Unan + 25%

*DRY WEIGHT BASIS
**AS RECEIVED BASIS

87/08/31 13:09

RECEIVED

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY PS-SO-1B

Mw-1D TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: Site ID:

PARK CITY PS-SO-15

Source: 00

Cost Code:

900

Lab Number:

8704608 lype: 50

87/07/21 Time: 14:50

Date of Review and QA Validation Inorganic Review:

87/08/31

Sample Date: Tot. Cations:

me/l Cations:

Organic Review: Radiochemistry Review: 87/08/31

Tot. Anions: Grand Total:

me/l Anions:

Microbiology Review:

<u>Laboratory Analyses</u>

60.0	ppm	T-Barium	160.0	ppm
7	ppm	T-Chromium	60.0	ppm
50.0	ppm	ľ-Iron	21000.0	ppm
220.0	ppm	T-Manganes	640.0	ppm
0.2	ppm	T-Selenium	<40.0	mqq
<7.0	ppm	T-Zinc	460.0	mqq
71.4				
	7 50.0 220.0 0.2 <7.0	60.0 ppm 7 ppm 50.0 ppm 220.0 ppm 0.2 ppm <7.0 ppm 71.4	7 ppm T-Chromium 50.0 ppm I-Iron 220.0 ppm T-Manganes 0.2 ppm T-Selenium <7.0 ppm T-Zinc	7 ppm T-Chromium 60.0 50.0 ppm I-Iron 21000.0 220.0 ppm T-Manganes 640.0 0.2 ppm T-Selenium <40.0 <7.0 ppm T-Zinc 460.0

8704589	
T-AS T-BA T-CD T-CR T-CU T-FE T-PB	47 11 6 10 35 24 11 88
HG T-SE T-AG T-ZN ASHW BAHW	<3C < 6 16
CDHW CRHW PBHW HGHW SEHW AGHW	8.1

47.000
110.00
6.000
100.00
35.000
24000.
110.00
880.00
. 089
<30.000
< 6.000
160.00

81.300

T-Arsenic, ug/l T-Barium, mg/l T-Cadmium, ug/l T-Chromium, ug/l T-Copper, ug/l T-Iron, mg/1T-Lead, ug/l T-Manganese, ug/l Mercury, ug/l T-Selenium, ug/l T-Silver, ug/l T-Zinc, ug/1Arsenic (HW), ppm Barium (HW), ppm Cadmium (HW), ppm Chromium (HW), ppm Lead (HW), ppm Mercury (HW), ppm Selenium (HW), ppm Silver (HW), ppm % Solids

MW1D TAILINGS

CW87123 MWD

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

SILVER CREEK PS MW3 1'-2' SOLID AND HAZARDOUS WASTE

MW-3 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

|Description: SILVER CREEK PS MW3 1'-2'

Site ID: CW87213 Source: 00

Cost Code: 365

Lab Number: 8704423 Type: Sample Date: 87/07/28 Time: 08:41

Tot. Cations:

Tot. Anions:

me/l Cations: Grand Total: me/l Anions: Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

	•				
T-Arsenic	380.0	ppm	T-Barium	210.0	ppm
T-Cadmium	190	ppm	T-Chromium	57.0	ppm
T-Copper	710.0	ppm	T-Iron	22000.0	ppm
T-Lead	13000.0	ppm	T-Manganes	2000.0	ppm
Mercury	3.7	ppm	T-Selenium	<30.0	ppm
T-Silver	67.0	ррті	T-Zinc	23000.0	ppm
% Solids					

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

SILVER CREEK PS MW3 1'-2' SOLID AND HAZARDOUS WASTE

> MW-3 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

SILVER CREEK PS MW3 1'-2'

Site ID: Cost Code: CW87213 Source: 00

365

Lab Number: Sample Date:

Tot. Cations:

8704423

Type:

87/07/28 Time: 08:41

Date of Review and QA Validation Inorganic Review: 87/08/31

Organic Review:

me/l Cations: Tot. Anions: Grand Total:

me/l Anions:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic	380.0	ppm	T-Barium	210.0	ppm
T-Cadmium	190	ppm	T-Chromium	57.0	ppm
T-Copper	710.0	ppm	T-Iron	22000.0	ppm
T-Lead	13000.0	ppm	T-Manganes	2000.0	ppm
Mercury	3.7	ppm	T-Selenium	<30.0	ppm
T-Silver	67.0	ppm	T-Zinc	23000.0	ppm
= % Solids	917	• •			

PARK CITY MW-3 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. Toxicity T.M. MW-3

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

00

PARK CITY MW-3 Description:

Site ID: CW87120 Source:

Cost Code: 365

Lab Number: 8704586 lype: 87/07/29 Time: 12:30

Sample Date:

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

	•				
T-Arsenic	<180.0	ppm	T-Barium	260.0	ppm
T-Cadmium	<40	ррт	T-Chromium	110.0	ррп
L T-Copper	37.0	ppm	T-1ron	31000.0	ppm
T-Lead	150.0	ppm	T-Manganes	810.0	ррт
Mercury	0.1	ppm	T-Selenium	<180.0	ppm
_T-Silver	<40.0	ppm	T-Zinc	410.0	ppm
Arsenic HW	<0.2		Barium HW	0.36	ppm
■Cadmium HW	<0.05		Cr (HW)	<0.03	ppm
▶ Lead (HW)	<0.2		Mercury HW	<0	mqq
■Se (HW)	<0.2	ppm	Silver HW	<0.01	ppm
% Solids	6.0				

87/08/31 13:09

RECEIVED

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY PS-SO-3A

MW-3 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-SO-3A

Site ID:

Source: 00

Cost Code:

900

Lab Number:

8704610 Type: 50

87/07/23 Sample Date:

Time: 13:40

Date of Review and QA Validation Inorganic Review: 87/08/31

Organic Review:

Tot. Cations: Tot. Anions:

me/l Cations:

Radiochemistry Review: 87/08/31

Grand Total:

me/l Anions:

Microbiology Review:

Laboratory Analyses

T-Arsenic	120.0	ppm	T-Barium	76.0	ppm
T-Cadmium	30	ppm	T-Chromium	40.0	ppm
T-Copper	160.0	ppm	T-Iron	25000.0	ppm
T-Lead	4800.0	ppm	T-Manganes	1000.0	ppm
Mercury	3.2	ppm	T-Selenium	<30.0	mqq
T-Silver	10.0	ppm	T-Zinc	5400.0	ppm
% Solids	82.3				

SEP 14 1987

SILVER CREEK MW-4 BUREAU OF SOLID AND HAZAR DOUS WASTE Utah Dept. of Health Bureau of Solid & Hazardous Waste

> MW-4 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

SILVER CREEK MW-4

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704246 Type: 5

87/07/18 Time: 10:15

Sample Date: Tot. Cations:

Tot. Anions:

me/l Cations:

Grand Total: me/l Anions:

Date of Review and QA Validation Inorganic Review: 87/09/02

Inorganic Review: Organic Review:

Radiochemistry Review: 87/09/02

Microbiology Review:

Laboratory Analyses

T-Arsenic	<45.0	ррт	T-Barium	110.0	ppm
T-Cadmium	<5	ppm	T-Chromium	27.0	ppm
T-Copper	35.0	ppm	T-Iron	17000.0	ppm
T-Lead	97.0	ppm	T-Manganes	280.0	ppm
Mercury	0.02	ppm	T-Selenium	<45.0	ppm
T-Silver	⟨9.0	ррт	T-Zinc	150.0	ppm
% Solids	94.0				

Approved by

) Comon

SEP 0 1 1987

PARK CITY PS-SO-4A

Bureau of Solid & Hazardous Waste

> MW-9 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-SO-4A

Site ID: Cost Code: Source: 00

Lab Number:

8704609 Type: 50

Sample Date:

87/07/23 [ime: 17:15

<u>Date of Review and QA Validation</u> Inorganic Review: 87/08/31

Inorganic Review: Organic Review:

Tot. Cations: Tot. Anions:

me/l Cations:

Radiochemistry Review: 87/08/31

Grand Total: me/l Anions:

900

nions: Microbiology Review:

Laboratory Analyses

T-Arsenic	320.0	ppm	T-Barium	160.0	ppm
T-Cadmium	67	ppm	T-Chromium	87.0	ppm
T-Copper	510.0	ppm	ſ−Iron	25000.0	ppm
T-Lead	5600.0	ppm	T-Manganes	2800.0	ppm
Mercury	4.1	ppm	T-Selenium	<25.0	ppm
T-Silver	40.0	ppm	T-Zinc	12000.0	ppm
% Solids	96.7				

Soli mate

SILVER CREEK MW-5 1-1.5 BUREAU OF SOLID AND HAZAR

DOUS WASTE

SEP 14 1987

Utah Dept. of Health Bureau of Solid & Hazardous Waste

MW-5

TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: SILVER CREEK MW-5 1-1.5

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704247

Type: 50

Sample Date: 87/07/20 Time: 11:40

Tot. Cations:

Tot. Anions:

me/l Cations:

Grand Total: me/l Anions: Date of Review and QA Validation Inorganic Review:

Organic Review:

Radiochemistry Review: 87/09/02

Microbiology Review:

Laboratory Analyses

T-Arsenic	410.0	ppm	ſ−Barium	94.0	ррт
T-Cadmium	83	ppm	T-Chromium	36.0	ppm
T-Copper	680.0	ppm	l-Iron	20000.0	ppm
T-Lead	6800.0	ppm	T-Manganes	2100.0	ppm
Mercury	4.5	ppm	T-Selenium	<26.0	ppm
T-Silver	52.0	ррт	T-Zinc	16000.0	ppm
1% Solids	95.2				

SEP 14 1987

Utan Dept. of Health Bureau of Sono & Hazardous Waste

MW-5 (4-5FT) TAILINGS

DOUS WASTE

BUREAU OF SOLID AND HAZAR

SILVER CREEK MW5 4-5

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

SILVER CREEK MW5 4-5

Site ID:

Source: 00

Cost Code:

365

Lab Number: Sample Date:

Type: 8704248

87/07/20 fime: 11:50

Date of Review and QA Validation Inorganic Review: 87/09/02

Organic Review:

Tot. Anions: me/l Cations:

Grand Total:

Tot. Cations:

me/l Anions:

Radiochemistry Review: 87/09/02

Microbiology Review:

Laboratory Analyses

T-Arsenic	480.0	ppm	T-Barium	57.0	mqq
T-Cadmium	88	ppm	T-Chromium	31.0	ppm
⊾T-Copper	570.0	ppm	T-Iron	17000.0	ppm
T-Lead	9300.0	ppm	T-Manganes	2400.0	ppm
Mercury	4.3	ррт	T-Selenium	<26.0	ppm
T-Silver	57.0	ppm	T-Zinc	17000.0	ppm
% Solids	91.6	•			

Approved by: (ivan

SEP 14 1987

Utah Dept. of Health Bureau of Solid & Hazardous Waste

SILVER CREEK MW 5-5--7-5 BUREAU OF SOLID AND HAZAR DOUS WASTE

> UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

MW-S (5-75 FT) TAILINGS

Description:

SILVER CREEK MW 5-5--7-5

Type:

Time:

Source:

Site ID:

365

Cost Code:

8704249

Lab Number:

Sample Date: 87/07/20

Tot. Cations:

Tot. Anions:

Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review:

87/09/02

Organic Review:

Radiochemistry Review: 87/09/02

Microbiology Review:

<u>Laboratory Analyses</u>

)					
T-Arsenic T-Cadmium	380.0	ppm	T-Barium	59.0	ppm
T-Cadmium	92	ррт	T-Chromium	32.0	ppm
_T-Copper	540.0	ррт	T-Iron	22000.0	ppm
T-Lead	7000.0	ppm	T-Manganes	1900.0	ppm
Mercury	2.3	ppm	T-Selenium	<27.0	ppm
T-Silver	59.0	ppm	T-Zinc	15000.0	ppm
■% Solids	91.8				

00

50

) (mem

SEP 14 1987

SILVER CREEK MW5 7-9 Utah Dept. of Health BUREAU OF SOLID AND HAZAR Bureau of Solid & Hazardous Waste DOUS WASTE

MW-5 (7-9FT)

TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: SILVER CREEK MW5 7-9

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704250 Type:

Sample Date: 87/07/20 Time:

50

Tot. Cations:

Date of Review and QA Validation Inorganic Review: 87/09/02

Organic Review:

Tot. Anions: Grand Total:

me/l Cations:

Radiochemistry Review: 87/09/02

me/l Anions:

Microbiology Review:

Laboratory Analyses

T-Arsenic	400.0	ppm	Γ-Barium	120.0	ppm
T-Cadmium	82	ppm	T-Chromium	33.0	ppm
T-Copper	660.0	ррш	T-Iron	16000.0	ppm
T-Lead	7700.0	ррт	T-Manganes	2100.0	ppm
Mercury	3.8	ppm	T-Selenium	<27.0	ppm
T-Silver	55.0	ppm	T-Zinc	15000.0	ppm
% Solids	91.0			•	• •

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

MW-5 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

Lab Number:

Sample Date: Tot. Cations:

Tot. Anions:

PARK CITY

PS-SO-5A

Source: 00

me/l Cations:

me/l Anions:

PS-S0-5A

Site ID: Cost Code:

900

PARK CITY

8704612 87/07/24

Type: 50

Time: 14:50

Date of Review and QA Validation Inorganic Review:

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Grand Total: Laboratory Analyses

T-Arsenic 210.0 ppm T-Cadmium 40 ppm 420.0 ppm T-Copper 1-Lead 4400.0 ppm Mercury 5.1 ppm T-Silver 27.0 ppm % Solids 84.7

T-Barium 75.0 ppm T-Chromium 33.0 ppm T-Iron 23000.0 ppm T-Manganes 1300.0 ppm T-Selenium <30.0 ppm T-Zinc 7000.0 ppm

PARK CITY PS-MW-6 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. Toxicity T.M. MW-6 # LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-MW-6

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704290 Type:

Sample Date:

lime:

40

Tot. Cations:

87/07/20

Date of Review and QA Validation

Inorganic Review: Organic Review:

Tot. Anions: Grand Total:

me/1 Cations:

me/l Anions:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

	•			
T-Arsenic	50.0		T-Barium 540.0	
T-Cadmium	20	ppm	T-Chromium 110.0	ppm
T-Copper	61.0	ppm	T-Iron 32000.0	ppm
T-Lead	480.0	ppm	T-Manganes 1500.0	ppm
Mercury	4.0	ppm	T-Selenium <50.0	ppm
T-Zinc	1500.0	ppm	Arsenic HW <0.2	ppm
Barium HW	0.34	ppm	Cadmium HW 0.06	ppm
Cr (HW)	<0.03	ppm	Lead (HW) <0.2	ppm
Mercury HW	<0	ppm	Se (HW) <0.2	ppm
Silver HW	<0.01	ppm	% Solids 14.1	

PARK CITY PS-MW-7 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. ToxICITY T.M

MW-7 LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-MW-7

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704288 Type:

87/07/20 Time:

Sample Date: Tot. Cations:

Tot. Anions:

me/1 Cations:

Grand Total: me/l Anions: Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

T-Arsenic	<100.0	ppm	1-Barium 920.0 j	ppm
T-Cadmium	42	ppm	1-Chromium 190.0	ppm
T-Copper	210.0	mqq	T-Iron 46000.0 j	ppm
T-Lead	1900.0	ppm	T-Manganes 1700.0 (ppm
Mercury	12.0	ppm	T-Selenium <100.0 p	ppm
T-Zinc	2900.0	ppm	Arsenic HW <0.2	ppm
Barium HW	0.22	ppm	Cadmium HW 0.08	ppm
Cr (HW)	<0.03	ppm	Lead (HW) 0.25 (ppm
Mercury HW	0.002	ppm	Se (HW) <0.2	mqq
Silver HW	<0.01	ppm	% Solids 5.9	

40

PARK CITY PS-MW-7 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. Toxicty T.M. MW-7

LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-MW-7

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704289 Type:

87/07/20 Time:

Sample Date: Tot. Cations:

Tot. Anions: Grand Total:

me/1 Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

}	-				
Γ-Arsenic	130.0	ppm	T-Barium	800.0	ppm
T-Cadmium	32	ррп	T-Chromium	160.0	ррт
Γ-Copper	260.0	ppm	T-Iron	40000.0	ppm
1-Lead	2600.0	ppm	T-Manganes	1600.0	ppm
Mercury	6.6	ppm	T-Selenium	<80.0	ppm
T-Zinc	3700.0	ppm	Arsenic HW	<0.2	ppm
Barium HW	0.27	ppm	Cadmium HW	0.12	ppm
Cr (HW)	<0.03	ррпі	Lead (HW)	0.48	ppm
Mercury HW	0.007	ppnı	Se (HW)	<0.2	ppm
Silver HW	<0.01	ppm	% Solids	1.6 . 6	

40

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY MW-8 BUREAU OF SOLID AND HAZAR DOUS WASTE

MW-8 LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY MW-8

Site ID:

CW87121 Source: 00

Cost Code:

365

Lab Number:

Type: 8704587 40

Bample Date:

87/07/30 lime:

Date of Review and QA Validation Inorganic Review: 87/08/31

Organic Review:

Tot. Cations: Tot. Anions:

Grand Total:

me/l Cations:

me/l Anions:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Anal<u>yses</u>

T-Arsenic	49.0	ppm	T-Barium	180.0	ppm
T-Cadmium	7	ррш	T-Chromium	70.0	ppm
T-Copper	28.0	ррт	T-Iron	23000.0	ppm
-Lead	120.0	ррт	T-Manganes	920.0	ppm
lercury	1.1	ррт	T-Selenium	<40.0	ppm
T-Silver	<7.0	ppm	T-Zinc	470.0	ppm
-¥ Solids	28.2	•			

PARK CITY MW-8 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. Toxicity T.M.

Mr-8 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY MW-8 Description:

Site ID: CW87124 Source: 00

Cost Code: 365

8704583 Lab Number: Type:

Sample Date: 87/07/30 Time: 09:00

Tot. Cations:

Tot. Anions: me/1 Cations:

Grand Total: me/l Anions: Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

<u>Laboratory Analyses</u>

	•				
T-Arsenic	70.0	ppm	T-Barium	90.0	ррп
T-Cadmium	16	ppm	T-Chromium	110.0	ppm
► T-Copper	60.0	ррт	T-Iron	21000.0	ppm
1-Lead	470.0	ррт	T-Manganes	920.0	ppm
Mercury	0.7	ppm	T-Selenium	<30.0	ppm
_1-Silver	<6.0	ppm	T-Zinc	1800.0	ppm
Arsenic HW	<0.2	ppm	Barium HW	0.23	ppm
Cadmium HW	0.15	ppm	Cr (HW)	<0.03	ppm
Lead (HW)	<0.2	ppm	Mercury HW	<0	ppm
Se (HW)	<0.2	ppm	Silver HW	<0.01	ppm
% Solids	83.6				

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY/SILVER CREEK PS MW 9 1-5'-2' SOLID AND HAZARDOUS WASTE

MW-9 (1.5-2 FT.) TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY/SILUER CREEK PS MW 9 1-5'-2' Description:

Source:

Site ID: CW87211

Cost Code: 365

Lab Number: 8704421

Type: Sample Date:

87/07/28 Time: 12:15

Tot. Cations:

Tot. Anions: me/l Cations: me/l Anions: Grand Total:

Date of Review and QA Validation

Inorganic Review:

87/08/31

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Barium T-Arsenic 460.0 ppm 14.0 ppm T-Cadmium 220 ppm T-Chromium 35.0 ppm T-Copper T-Iron >72000.0 ppm 490.0 ppm 2000.0 ppm T-Lead 8500.0 ppm T-Manganes T-Selenium Mercury 60.0 ppm 0.8 ppm T-Zinc T-Silver 59.0 ppm mag 0.00018 % Solids 90.0

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY/SILVER CREEK PS MW9 3'-3.5' SOLID AND HAZARDOUS WASTE

MW-9 (3-3.5 FT) TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY/SILUER CREEK PS MW9 3'-3.5'

Site ID:

CW87212

Cost Code: Lab Number:

365

8704422

Type: 87/07/28 Time: 12:30

Source: 00

Date of Review and QA Validation Inorganic Review:

Organic Review:

Sample Date: Tot. Cations:

Tot. Anions: Grand Total: me/1 Cations:

me/l Anions:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic	430.0	ppm	T-Barium	66.0	ppm
T-Cadmium	77	ppm	T-Chromium	33.0	ppm
T-Copper	630.0	ppm	T-Iron	34000.0	ppm
T-Lead	8300.0	ppm	T-Manganes	1900.0	ppm
Mercury	4.5	ppm	Γ-Selenium	<30.0	ppm
T-Silver	50.0	ppm	T-Zinc	13000.0	ppm
9 Solide	86 0				

Approved by:

Oman Rough Estimate

SEP 0 1 1987

Bureau of folid & Hazardous Wasig

MW-9 (29-30 FT.)

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

TAILINGS

Description:

PARK CITY SILUER CREEK PS MW9-29-30

Site ID:

365

DOUS WASTE

Cost Code: Lab Number:

8704420

87/07/28

BUREAU OF SOLID AND HAZAR

Type: 50

Time: 12:20

Date of Review and QA Validation Inorganic Review:

87/08/31

Sample Date: Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

Source:

PARK CITY SILVER CREEK PS MW9-29-30

me/l Anions:

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic 530.0 ppm T-Cadmium 130 ppm 730.0 ppm T-Copper 9400.0 ppm T-Lead Mercury 3.0 ppm 53.0 ppm T-Silver % Solids 83.4

T-Barium 18.0 ppm T-Chromium 29.0 ppm >76000.0 ppm T-Iron T--Manganes 1800.0 ppm T-Selenium 60.0 ppm T-Zinc 19000.0 ppm

Approved by:

man Rough Estimate

87/08/31 13:08

RECEIVED

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

MW-10(2-48T.)

UIAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report TAILINGS

PARK CITY MW-10 Description: Site ID: CW87126

Cost Code: 365

8704585 Lab Number: Type: 40 Time: 09:55 Sample Date: 87/07/31

PARK CITY MW-10 2-4

DOUS WASTE

BUREAU OF SOLID AND HAZAR

Tot. Cations:

Tot. Anions: Grand Total:

me/1 Cations:

Source:

me/l Anions:

Date of Review and QA Validation Inorganic Review: 87/08/31

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic 370.0 ppm T-Barium 56.0 ppm T-Cadmium T-Chromium 56 ppm 19.0 ppm 620.0 ppm T-Iron T-Copper 11000.0 ppm T-Lead 8700.0 ppm T-Manganes 1800.0 ppm T-Selenium Mercury 4.9 ppm <30.0 ppm 56.0 ppm T-Zinc T-Silver 12000.0 ppm % Solids 83.0

2 - 4

Approved by:

Rouch Extinate

SEP 0 1 1987

PARK CITY MW-10 BUREAU OF SOLID AND HAZAR DOUS WASTE

Bureau of Solid & Hazardous Waste

> MW-10 LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY MW-10

Site ID:

CW87122 Source: 00

Cost Code:

365

Lab Number:

8704588 Type: 40

Sample Date:

87/07/31 Time: 09:00

Tot. Cations:

Tot. Anions:

Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review:

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic 830.0 ppm T-Barium 250.0 ppm T-Cadmium T-Chromium <85.0 ppm <85 ppm 1100.0 ppm 36000.0 ppm T-Copper T-Iron T-Lead 12000.0 ppm T-Manganes 1800.0 ppm T-Selenium Mercury 18.0 ppm <420.0 ppm T-Zinc T-Silver 80.0 ppm 14000.0 ppm 2.8 % Solids

pproved by:

Oman Rough Estimate

SEP 14 1997

PARK CITY MW-10 1-2 BUREAU OF SOLID AND HAZAR DOUS WASTE

Utar Dant of Maglith Bureau or Sono & mazardous Waste

MW-10 (1-2 FT) TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY MW-10

Site ID:

CW87125 Source: 00

Cost Code: 365

Lab Number:

8704584 Type: 40

Sample Date:

87/07/31 Time: 09:49

lot. Cations:

Tot. Anions:

me/l Cations:

Grand Total: me/l Anions: Date of Review and QA Validation 87/09/01

Inorganic Review: Organic Review:

Radiochemistry Review: 87/09/01

Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic	210.0	ppm	T-Barium	32.0	ppm
T-Cadmium	63	ppm	T-Chromium	32.0	ppm
T-Copper	360.0	ppm	T-Iron	20000.0	ррт
T-Lead	4800.0	ppm	T-Manganes	1900.0	ppm
Mercury	3.7	ppm	T-Selenium	<32.0	ppm
T-Silver	32.0	ppm	T-Zinc	11000.0	ppm
% Solids	91.0				

CUTTINGS/H20 SAMPLES FROM DRILLING

RECEIVED

OCT 02 1987

PARK CITY SILVER CREEK/PROSPECTOR SQUARE MW-12 Utah Dept. of Health BUREAU OF SOLID AND HAZAR DOUS WASTF Bureau of Solid & Hazardous Waste DOUS WASTE

MW-12/TAILINGS) =2D

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: PARK CITY SILVER CREEK/PROSPECTOR SQUARE MW-12 = 2] Source: 00

Site ID: Cost Code:

365

Lab Number: Sample Date: 8704876

Type:

Time: 16:00 87/08/14

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation Inorganic Review:

Organic Review:

Radiochemistry Review: 87/09/30

Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic	51.0	ppm	T-Barium	72.0	mqq
T-Cadmium	7.2	ppm	T-Chromium	33.0	ppm
T-Copper	22.0	ppm	T-Iron	20000.0	ppm
T-Lead	72.0	ppm	T-Manganes	720.0	ppm
Mercury	0.04	ppm	T-Selenium	<12.0	ppm
T-Silver	<0.6	ppm	T-Zinc	190.0	ppm
■Arsenic HW	<0.5	ppm	Barium H W	0.15	ppm
Cadmium HW	<0.13	ppm	Cr (HW)	<0.08	ppm
Lead (HW)	<0.5	ppm	Mercury HW	<0	ppm
Se (HW)	<0.5	ррт	Silver HW	<0.03	
% Solids	82.9				

PARK CITY SILVER CREEK/PROSPECTOR SQUARE MW-12 BUREAU OF SOLID AND HAZAR DOUS WASTE

MW-12 (CUTTINGS) = 2D - LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: PARK CITY SILVER CREEK/PROSPECTOR SQUARE MW-12 = 2

Site ID: Source: 00

Cost Code: 365

Lab Number: 8704875 Type: 40 Sample Date: 87/08/14 Time: 16:00

Tot. Cations:

Tot. Anions: Grand Total: me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: 87/09/30

Microbiology Review:

Laboratory Analyses

T-Arsenic	130.0	ppm	T-Barium	230.0	ppm
T-Cadmium	<23	ppm	T-Chromium	98.0	ppm
⊾T-Copper	54.0	ppm	T-Iron	37000.0	ppm
T-Lead	360.0	ppm	T-Manganes	1600.0	ppm
Mercury	0.58	ppm	T-Selenium	<90.0	ррт
T-Silver	<5.0	ppm	T-Zinc	490.0	ppm
Arsenic HW	<0.5	ppm	Barium HW	0.75	ppm
Cadmium HW	<0.13	ppm	Cr (HW)	<0.08	ppm
Lead (HW)	<0.5	ppm	Mercury HW	<0	mqq
Se (HW)	<0.5	ppm	Silver HW	<0.03	ppm
POLIDS Y	3 R				

Approved by:

J. Oman

PARK CITY SILVER CREEK / PROSPECTOR SQUARE

MW-12 = 2D TAILINGS

Date of Review and QA Validation

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY SILVER CREEK / PROSPECTOR SQUARE Description: Source: 00

Site ID:

365

DOUS WASTE

Cost Code: Lab Number:

Sample Date:

8704874

87/08/13

Type:

fime: 11:28

Inorganic Review:

87/09/30

JBO Page

Organic Review:

Tot. Anions: me/l Cations:

BUREAU OF SOLID AND HAZAR

Grand Total:

Tot. Cations:

me/l Anions:

Radiochemistry Review: 87/09/30

Microbiology Review:

<u>Laboratory Analyses</u>

	the state of the s				
T-Arsenic	34.0	ppm	Γ-Barium	54.0	ppm
T-Arsenic T-Cadmium	5.3	ppm	T-Chromium	37.0	ppm
_T-Copper	21.0	ppm	Γ−Iron	13000.0	ppm
T-Lead	97.0	ppm	T-Manganes	260.0	ppm
Mercury	0.04	ppm	T-Selenium	<12.0	ppm
T-Silver	1.7	ppm	T-Zinc	160.0	ppm
Arsenic HW	<0.5	ppm	Barium HW	0.25	ppm
Cadmium HW	<0.12	ppm	Cr (HW)	<0.08	ppm
Lead (HW)	<0.5	ppm	Mercury HW	<0	mqq
Se (HW) % Solids	<0.5	ppm	Silver HW	<0.03	ppm
% Solids	82.2				

PARK CITY SILVER CREEK/PROSPECTOR SQUARE BUREAU OF SOLID AND HAZAR DOUS WASTE

MW-12 = 20 LIQUE

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY SILVER CREEK/PROSPECTOR SQUARE Description:

Site ID: Cost Code:

365

Lab Number: Sample Date:

Tot. Cations:

Tot. Anions:

Grand Total:

8704873

Type:

87/08/13 Time: 11:40

Source: 00

me/l Cations:

me/l Anions:

Date of Review and QA Validation Inorganic Review: 87/09/30

Organic Review:

Radiochemistry Review: 87/09/30

Microbiology Review:

Laboratory Analyses

T-Arsenic	140.0	ppm	Γ-Barium 300.0	ppm
T-Cadmium	<35	ppm	T-Chromium 84.0	ppm
T-Copper	34.0	ppm	T-Iron 31000.0	ppm
T-Lead	150.0	ppm	T-Manganes 300.0	ppm
Mercury	0.1	ppm	T-Selenium <140.0	ppm
T-Silver	<7.0	ррт	T-Zinc 320.0	ppm
Arsenic HW	<0.5	ppm	Barium HW 0.95	ppm
Cadmium HW	<0.13	ppm	Cr (HW) <0.08	ppm
Lead (HW)	<0.5	mqq	Mercury HW <0	ppm
Se (HW)	<0.5	ppm	Silver HW <0.03	ppm
% SOLTOS	3.0			

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY PS-SO-LARSON

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-SO-LARSON

Site ID:

Source: 00

Cost Code:

900

Lab Number:

8704611 Type: 50

Sample Date:

87/07/24 Time: 17:55

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation 87/08/31

Inorganic Review:

Organic Review: Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

_					
T-Arsenic	150.0	ppm	T-Barium	150.0	ppm
T-Cadmium	30	ppm	T-Chromium	210.0	ppm
T-Copper	280.0	ppm	T-Iron	37000.0	ppm
T-Lead	2900.0	ppm	T-Manganes	2800.0	ppm
Mercury	2.5	ppm	T-Selenium	<30.0	ppm
T-Silver	20.0	ppm	T-Zinc	4000.0	ppm
% Solids	95 7	• •			

Kough Sotimate

TABLE 1

TAILINGS CHARACTERIZATION SAMPLES SUBSURFACE SOILS (ug/1) EP TOXICITY LEACHING TEST PROSPECTOR SQUARE PARK CITY, UTAH

SAMPLE NUMBER TRAFFIC NUMBER SAMPLE INTERVAL	PS-MW-3 MHH-057 1.0-2.0'	PS-MV-4 MHH-058 1.0-1.5'	PS-MW-5 MHH-053 1.0-1.5'	PS-MW-5 MHH-054 4.0-5.5'		PS-HV-5 MHH-056 7.5-9.0'
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	[87]j 34uj 10uj [22] 1.5uj 583j 32,900 3.1uj 6.8u 327 17uj 5640 [1920] 2410j 0.2uj 24u [2020] 5.0uj [6.3]j [769] [4.8]r [13]	[56]j 34uj 1.2uj 360 1.5uj 29j 388,000 3.1uj 6.8u 2.1u 17uj 51j 7400 292j 0.2uj 24u [2380]j 2.0uj 2.2uj [3600]j 10r [12]	[66]nj 34uj 10uj [138] 1.5u 675j 165,000 3.1uj 6.8u 179j 17uj 2370 [2870] 2510j 0.2u 24u [1740]j [3.0]j [8.6]j [322]j 2.1r [7.7]	[196]j 34uj 10uj [61] 1.5uj 675j 150,000 3.1uj 6.8u 158j [92]j 2170j [2280] 2240j 0.2uj 24u [1800]j 2.0j [8.1]j [295] 2.1r [6.6]	[89]j 34uj 10uj [82] 1.5uj 608j 184,000 3.1uj 6.8u 100j 17uj 1790j [2850] 2530j 0.2uj 24u [2090]j 2.0uj [6.0]j [414]j 2.1r [6.6]	[103]j 34uj 10uj [21] 1.5uj 1670j 25,900 3.1uj 6.8u 324j 17uj 1890j [1960] 2550j 0.2uj 24u [1440]j 2.0uj [9.5]j [311]j 2.1r [11]
Zinc	85, 900r	1160	63,400	61,800	504,000	84,500

^{[] -} indicated concentation detected at less than contract required detection limits.

u - indicates - undetected at this concentration

uj - detection limit estimated because not all quality control criteria were

j - estimated value; not all quality control criteria were met

r - rejected data

TABLE 1

TAILINGS CHARACTERIZATION SAMPLES SUBSURFACE SOILS EP TOXICITY LEACHING TEST (ug/1) PROSPECTOR SQUARE PARK CITY, UTAH

SAMPLE NUMBER TRAFFIC NUMBER SAMPLE INTERVAL	MHH-059	PS-MW-9 MHH-060 1.5-2.0'	MHH-061	EP TOXI- CITY STANDARD	EPA HAZ- ARDOUS NUMBER
Aluminum	[53]j	[27]uj	[99]j		
Antimony	[39]j	[34]uj	34uj		
Arsenic	10uj	1.2uj	10uj	5000	D0004
Barium	[161]	[69]	[83]	100,000	D0005
Beryllium	1.5uj	1.5uj	1.5uj		
Cadmium	277j	834j	643	1000	D0006
Calcium	204,000	410,000	167,000		
Chromium	3.1uj	•	3.1uj	5,000	D0008
Cobalt	6.8u		[14]		
Copper	232j	•	230j		
Iron	17uj	17uj	17 u j		
Lead	5 9 0 j	-	1760j	5000	
Magnesium	[2770]		[4460]		
Hanganese	4450j	3100j	6 5 00j		
Mercury	0.2uj	0.7j	0.2uj	200	D0009
Nickel	24u	24u	24u		
Potassium	[538]j	1 80 uj	[712]j		
Selenium	2.Ouj	5.0uj	2.0uj	1000	D0010
Silver	2.2uj	2.2uj	[2.4]uj	5000	D0011
Sodium	[1900]	[1220]j	•		
Thallium	10r	10r	2.1r		
Vanadium	[4.9]	2.9u	[3.6]		
Zinc	14100	52,100r	44,000		

^{[] -} indicated concentation detected at less than contract required detection limits.

u - indicates - undetected at this concentration

uj - detection limit estimated because not all quality control criteria were
 met

j - estimated value; not all quality control criteria were met

r - rejected data

TABLE 2 EP TOXICITY ANALYTICAL RESULTS, (ug/1) SUBSURFACE BOREHOLE SAMPLES PROSPECTOR SQUARE PARK CITY, UT CASE #3317H

SAMPLE NUMBER DEPTH TRAFFIC NUMBER	ВН-01 3.5'-4.0' МНН-092	ВН-01 4.0'-5.5' МНН-093		ВН-02 2.0'-4.0' МНН-094	
Aluminum	78u	78u	78u	78 u	78 u
Antimony	50u	5 0u	50u	50u	96
Arsenic	10u	10u	10u	10u	10u
Barium	[108]	[164]	[27]	23u	23u
Beryllium	2u	2u	2u	2u	2u
Cadmium	251	178	7 92	904	1090
Calcium	19100	29600	661000	655000 i	674000j
Chromium	22	9 u	9u	9u	9u
Cobalt	20u	20u	[20]	20u	20u
Copper	9u	9 u	53	221	578
Iron	113	43u	[43]	43u	43u
Lead	5.82 j	154 ₁	291 0j	2540 j	2440j
Magnesium	[1 9 70]	[3730]	[3360]	11300	7050
Manganese	169 j	379 _j	39 9 0 j	5 90 0	7330
Mercury	0.2u	0.2u	1.3	2.5j	0.2j
Nickel	25u	25u	25u	6 8 j	25u
Potassium	[4550]	[4370]	[1210]	[1050]	[1170]
Selenium	5 u	5u	5u	5u	25u
Silver	8u	8u	8u	8u	8u
Sodium	[4390]	[3820]	[2010]	7 19 0	7390
Thallium	10u	10u	10u	10u	10u
Tin	38u	38u	3 8u	38u	38u
Vanadium	11u	11u	11u	11 u	11u
Zinc	12900	10100	96500	102000	108000

^{[] -} indicated concentation detected at less than contract required detection limits.

u - indicates - undetected at this concentration

uj - detection limit estimated because not all quality control criteria were met

j - estimated value; not all quality control criteria were met
r - rejected data

TABLE (SOLUBILITY CONSTANTS) PREDICTED ZINC CONCENTRATIONS (ug/1) VERSUS pH

log Kg	Zn ²⁺ 11.2	ZnOH ⁺ 2.2	ZnC0 ₃ 7.95	
pH 5.5	130,000	205,550	10,183	
pH 6.5	10,980	72,172	315	
pH 7.0	2,740	42.766	45	

PARK CITY MW-1D BUREAU OF SOLID AND HAZAR DOUS WASTE

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: PARK CITY MW-1D

Site ID: CW87123 Source: 00

Cost Code: 365

Lab Number: 8704589 Type: 40

Sample Date: 87/08/03 Time: 12:35

Tot. Cations:

Tot. Anions: me/l Cations:

Grand Total: me/l Anions:

Date of Review and QA Validation

Inorganic Review: 87/10/27

Organic Review:

Radiochemistry Review: 87/10/27

Microbiology Review:

Laboratory Analyses

T-Arsenic	47.0	таа	Γ-Barium 110.0	mag
T-Cadmium	6		T-Chromium 100.0	
T-Copper	35.0		ſ-Iron 24000.0	
T-Lead	110.0	ppm	T-Manganes 880.0	ppm
Mercury	0.089	ppm	T-Selenium <30.0	ppm
T-Silver	<6.0	ppm	T-Zinc 160.0	ppm
Arsenic HW	NO	ppm	Barium HW NO	ppm
Cadmium HW	NO	ppm	Cr (HW) NO	ррт
Lead (HW)	NO	ppm	Mercury HW NO	ppm
Se (HW)	NO	ppm	Silver HW NO	ррпі
% Solids	81.3			

Approved by:

> Onan

PROSPECTOR SQUARE
M.SLAM BUREAU OF SOLID
AND HAZARDOUS WASTE

E.P. TOXICITY T.M.

MW-1

UTAH STATE HEALTH LABORATORY
Environmental Chemistry Analysis Report TAILINGS

Description:

PROSPECTOR SQUARE

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704125 Type:

50

Samele Date: Tot. Cations: Tot. Anions:

87/07/16 Time:

0//0//

me/l Cations:

Grand Total: me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

	•			
T-Arsenic	6.0	ppm	T-Barium 34.0	mqq
1-Cadmium	13	ppm	1-Chromium 50.0	mqq
T-Lead	110.0	ppm	T-Manganes 500.0	mqq
Mercury	<1.0	ppm	T-Silver 1.3	ppm
T-Zinc	250.0		Arsenic HW <0.2	ppm
Barium HW	0.093	ppm	Cadmium HW <0.05	ppm
Cr (HW)	<0.03	ppm	Lead (HW) <0.2	ppm
Mercury HW	<0	ppm	Se (HW) <0.2	ppm
Silver HW	0.01	mqq	% Solids 94.0	

Approved by:

1. Oman

PARK CITY MW-1 M.SLAM BUREAU OF SOLID AND HAZARDOUS WASTE E.P. TOXICITY T.M.

> MW-1 LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY MW-1

Site ID:

CW87160 Source: 00

Cost Code:

365

Lab Number:

8704099 Type: 40

Sample Date:

87/07/15 Time: 14:30

Tot. Cations:

Tot. Anions:

me/l Cations:

Grand Total: me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

T-Arsenic	13.0	mqq	T-Barium	480.0	mqq
T-Cadmium	21	ррт	T-Chromium	115.0	ppm
T-Lead	170.0		T-Manganes	4800.0	ppm
Mercury	<2.0	ppm .	T-Silver	5.0	ррт
T-Zinc	310.0	ppm	Arsenic HW	<0.2	ppm
Barium HW	0.57	ppm	Cadmium HW	<0.05	ppm
Cr (HW)	<0.03	ppm	Lead (HW)	<0.2	ppm
Mercury HW	<0	ppm	Se (HW)	<0.2	ppm
Silver HW	<0.01	ppm	%SOLIDS	8.2	, ,

Approved by:

J. Coman

JBO Page:

RECEIVED

JUL 2 0 1987

Utah Dept. of Health Bureau of Solid & Hazardous Waste

PROSPECTOR SQUARE MW-1 M.SALM BUREAU OF SOLID AND HAZARDOUS WASTE

> Mw-1 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PROSPECTOR SQUARE

MW-1

Site ID:

Source:

Cost Code:

365

Lab Number: Sample Date:

Tot. Cations:

8704124 87/07/16 Time:

Type:

50

Date of Review and QA Validation Inorganic Review: 87/07/17

Organic Review:

me/l Cations: Tot. Anions: me/l Anions: Grand Total:

Radiochemistry Review: 87/07/17

Microbiology Review:

Laboratory Analyses

	· -X	**,	
T-Arsenic	<10.0	ppm(<.2)	Т-
T-Cadmium	17	ppm (+3¢)	T-
T-Lead	77.0	ppm (1.6\	7-
Mercury	<1.0	ppm (∠ıı)	T-
T-Zinc		ppm (3.6)	%
_		7 .	

100 0 ppm (2 2) -Barium -Chromium 73.0 ppm (1.5) -Manganes 980.0 ppm (2.6) -Silver 2.0 ppm (• • 4) Solids 83.3

TOVED BY: Dran + 25%

**DRY WEIGHT BASIS

***AS RECEIVED BASIS

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY PS-SO-1B

MW-1D TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-SO-18

Site ID:

Source: 00

Cost Code:

900

Lab Number:

8704608 Type: 50

Sample Date:

87/07/21 Time: 14:50

Tot. Cations:

Tot. Anions: Grand Total: me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review:

87/08/31

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic	60.0	ppm	T-Barium	160.0	ppm
T-Cadmium	7	ppm	T-Chromium	60.0	
T-Copper T-Lead	50.0	ppm	T-Iron	21000.0	
T-Lead	220.0	ppm	T-Manganes	640.0	ppm
Mercury	0.2	ppm	T-Selenium	<40.0	ppm
T-Silver	<7.0	ppm	T-Zinc	460.0	
& Solids	71.4	•			• •

Tough

8704589	
T-AS	47
T-BA	1 3
T-CD	(
T-CR	10
T-CU	3 5
T-FE	24
T-PB	1 1
T-MN	88
HG LT 0.5	
T-SE	<30
T-AG	< 6
T-ZN	16
ASHW	
BAHW	
CDHW CRHW	
PBHW	
HGHW	
SEHW	
AGHW	
1.0	

81.300

Arsenic (HW), ppm
Barium (HW), ppm
Cadmium (HW), ppm
Chromium (HW), ppm
Lead (HW), ppm
Mercury (HW), ppm
Selenium (HW), ppm
Silver (HW), ppm
% Solids

MW1D TAILINGS

CW87123 MWD

6 E Garage Francis in the

T-Arsenic, ug/l
T-Barium, mg/l
T-Cadmium, ug/l
T-Chromium, ug/l
T-Copper, ug/l
T-Iron, mg/l
T-Lead, ug/l

T-Manganese, ug/l Mercury, ug/l T-Selenium, ug/l T-Silver, ug/l T-Zinc, ug/l

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

Kongh Estimate) Oman

SILVER CREEK PS MW3 1'-2' SOLID AND HAZARDOUS WASTE

MW-3 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: SILUER CREEK PS MW3 1'-2'

Site ID: CW87213 Source: 00

Cost Code: 365

Lab Number: 8704423 Type: 50

Sample Date: 87/07/28 Time: 08:41

Tot. Cations:

Tot. Anions: me/l Cations:

Grand Total: me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic	380.0	ppm	T-Barium	210.0	ppm
T-Cadmium	190	ppm	T-Chromium	57.0	ppm
∎T-Copper	710.0	ppm	T-Iron	22000.0	ppm
T-Lead	13000.0	ppm	T-Manganes	2000.0	ррт
T-Lead Mercury	3.7	ppm	T-Selenium	<30.0	ppm
T-Silver	67.0	ppm	T-Zinc	23000.0	ppm
T-Silver % Solids		•			

87/08/31 13:08

RECEIVED

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

SILVER CREEK PS MW3 1'-2' SOLID AND HAZARDOUS WASTE

> Mw-3 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

SILVER CREEK PS MW3 1'-2'

Site ID:

CW87213

Cost Code: 365 Lab Number:

8704423

Type: 50

Source: 00

Sample Date:

87/07/28 Time: 08:41

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Inorganic Review:

Date of Review and QA Validation 87/08/31

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic	380.0	ppm	T-Barium	210.0	ppm
T-Cadmium	190	ppm	1-Chromium	57.0	ppm
T-Copper	710.0	ppm	T-Iron	22000.0	ppm
T-Lead	13000.0	ppm	T-Manganes	2000.0	ppm
Mercury	3.7	ppm	T-Selenium	<30.0	ppm
T-Silver	67.0	ppm	T-Zinc	23000.0	ppm
9 507-140	917			`	

PARK CITY MW-3 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. Toxicity T.M. MW-3

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

|Description: PARK CITY MW-3

Site ID: CW87120 Source: 00

Cost Code: 365

Lab Number: 8704586 Type: 40

Sample Date: 87/07/29 Time: 12:30

Tot. Cations: Tot. Anions: me/l Cations:

Grand Total: me/l Anions: Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

T-Arsenic	<180.0	ppm	T-Barium	260.0	mqq
T-Cadmium	<40	ppm	T-Chromium	110.0	ррп
⊾ĭ-Copper	37.0	ppm	T-Iron	31000.0	ppm
T-Lead	150.0	ррт	T-Manganes	810.0	ppm
Mercury	0.1	ррт	T-Selenium	<180.0	ppm
T-Silver	<40.0	ppm	T-Zinc	410.0	ppm
Arsenic HW	<0.2	ppm	Barium HW	0.36	mqq
Cadmium HW	<0.05	ррт	Cr (HW)	<0.03	ppm
Lead (HW)	<0.2	ppm	Mercury HW	<0	mqq
Se (HW)	<0.2	ppm	Silver HW	<0.01	ppm
% Solids	6 ()				

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY PS-SO-3A

MW-3 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

■Description:

PARK CITY PS-SO-3A

Site ID:

Source: 00

Cost Code: Lab Number: 900

ber: 8704610

04610 Type: 50

Sample Date:

87/07/23 Time: 13:40

Tot. Cations: Tot. Anions:

me/l Cations:
 me/l Anions:

Grand Total:

Date of Review and QA Validation Inorganic Review: 87/08/31

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

_					
∏-Arsenic	120.0	ppm	Ϊ−Barium	76.0	mqq
1-Cadmium	30	ppm	1-Chromium	40.0	ppm
T-Copper	160.0	ppm	ſ−Iron	25000.0	ppm
T-Lead	4800.0	ppm	T-Manganes	1000.0	ppm
Mercury	3.2	ppm	T-Selenium	<30.0	ppm
T-Silver	10.0	ppm	T-Zinc	5400.0	ppm
m % Solids	82.3				

touch Estimate

SEP 14 1987

SILUER CREEK MW-4 BUREAU OF SOLID AND HAZAR DOUS WASTE

Utah Dept. of Health Bureau of Solid & Hazardous Waste

Date of Review and QA Validation

110.0 ppm 27.0 ppm 17000.0 ppm 280.0 ppm <45.0 ppm 150.0 ppm

Inorganic Review: 87/09/02

MW-4 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

SILVER CREEK MW-4

Site ID:

Source: 00

Cost Code:

365

Lab Number:

Type: 50 8704246

Sample Date: 87/07/18 Time: 10:15

Tot. Cations: Tot. Anions:

me/l Cations:

Grand Total:

me/l Anions:

Radiochemistry Review: 87/09/02

Microbiology Review:

Organic Review:

<u>Laboratory Analyses</u>

<45.0	ppm	T-Barium
<5	ppm	T-Chromium
35.0	ppm	T-Iron
97.0	ррт	T-Manganes
0.02	ppm	T-Selenium
<9.0	ppm	T-Zinc
94.0		
	<pre></pre>	<pre><45.0 ppm <5 ppm 35.0 ppm 97.0 ppm 0.02 ppm <9.0 ppm <9.0 ppm 94.0</pre>

SEP 0 1 1987

PARK CITY PS-SO-4A

Bureau of Solid & Hazardous Waste

> Mw-4 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-SO-4A

Site ID:

Source: 00

Cost Code:

900

Lab Number:

8704609 Type: 50 87/07/23

Sample Date:

Time: 17:15

Tot. Cations:

me/l Cations:

Tot. Anions: Grand Total:

me/l Anions:

Date of Review and QA Validation 87/08/31

Inorganic Review:

Organic Review: Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic	320.0	ppm	T-Barium	160.0	ppm
T-Cadmium	6 7	ppm	T-Chromium	87.0	ppm
T-Copper	510.0	ppm	Γ−Iron	25000.0	ppm
T-Lead	5600.0	ppm	TManganes	2800.0	ppm
Mercury	4.1	ppm	T-Selenium	<25.0	ppm
T-Silver	40.0	ppm	T-Zinc	12000.0	ppm
% Solids	96.7				

Lough Sati mate

SEP 14 1987

SILVER CREEK MW-5 1-1.5 BUREAU OF SOLID AND HAZAR DOUS WASTE

Utah Dept. of Health Bureau of Solid & Hazardous Waste

MW-5

TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

SILVER CREEK MW-5 1-1.5

Site ID:

Source:

Cost Code:

365

Lab Number:

Tot. Anions: Grand Total:

8704247 Type:

87/07/20

Time: 11:40

Sample Date: Tot. Cations:

me/1 Cations:

me/l Anions:

Date of Review and QA Validation 87/09/02

Inorganic Review:

Organic Review: Radiochemistry Review: 87/09/02

Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic	410.0	ррт	ſ−Barium	94.0	ppm
T-Cadmium	83	ppm	T-Chromium	36.0	ррш
T-Copper	680.0	ppm	l-1ron	20000.0	ppm
T-Lead	6800.0	ррт	T-Manganes	2100.0	ppm
Mercury	4.5	ppm	T-Selenium	<26.0	mqq
T-Silver	52.0	ppm	T-Zinc	16000.0	ppm
≅% Solids	95.2				

J. Chan

SEP 14 1987

SILVER CREEK MW5 4-5 BUREAU OF SOLID AND HAZAR DOUS WASTE

Utah Dept. of Health Bureau of Sono & Hazardous Waste

MW-5 (4-5FT) TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

SILVER CREEK MW5 4-5

Site ID:

Source:

Cost Code:

365

Lab Number: Sample Date:

8704248 Type:

50

87/07/20 | Time: 11:50

Date of Review and QA Validation Inorganic Review: 87/09/02

Organic Review:

Tot. Cations: Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Radiochemistry Review: 87/09/02

Microbiology Review:

Laboratory Analyses

-					
T-Arsenic T-Cadmium	480.0	ppm	T-Barium	57.0	ppm
T-Cadmium	88	ppm	T-Chromium	31.0	ppm
T-Copper	570.0	ppm	T-Iron	17000.0	ppm
T-Lead	9300.0	ppm	T-Manganes	2400.0	ppm
T-Lead Mercury	4.3	ppm	T-Selenium	<26.0	ppm
T-Silver	57.0	ppm	T-Zinc	17000.0	ppm
■% Solids	91.6				

SEP 14 1987

SILVER CREEK MW 5-5--7-5 BUREAU OF SOLID AND HAZAR DOUS WASTE

Utah Dept. of Health Bureau of Solid & Hazardous Waste

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report MW-S (S-75 FT)
TAILINGS

Description: SILVER CREEK MW 5-5--7-5

Site ID:

Source: 00

Cost Code:

365

Lab Number: Sample Date:

8704249 Type:

50

87/07/20 \(\text{fime}\):

Inorganic Review:

Date of Review and QA Validation

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Organic Review:

Radiochemistry Review: 87/09/02

Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic	380.0	ppm	T-Barium	59.0	mqq
T-Cadmium	92	ppm	T-Chromium	32.0	ppm
T-Copper	540.0	ppm	T-Iron	22000.0	ppm
T-Lead	7000.0	ppm	T-Manganes	1900.0	ppm
Mercury	2.3	ppm	T-Selenium	<27.0	ppm
T-Silver	59.0	ррт	T-Zinc	15000.0	ppm
% Solids	91.8				

Approved by:

(mem

SEP 14 1987

SILVER CREEK MW5 7-9 BUREAU OF SOLID AND HAZAR DOUS WASTE

Utah Dept. of Health Bureau of Solid & Hazardous Waste

MW-5 (7-9FT)

TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: SILVER CREEK MW5 7-9

Site ID:

Source:

Cost Code:

365

Lab Number:

8704250 Type: 50

Sample Date:

87/07/20 Time:

Inorganic Review: 87/09/02

Date of Review and QA Validation

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Organic Review:

Radiochemistry Review: 87/09/02

Microbiology Review:

Laboratory Analyses

T-Arsenic	400.0	ppm	T-Barium	120.0	mqq
T-Cadmium	82	ppm	T-Chromium	33.0	ppm
T-Copper	660.0	ppm	T-Iron	16000.0	ppm
T-Lead	7700.0	mqq	T-Manganes	2100.0	ppm
Mercury	3.8	ppm	T-Selenium	<27.0	ppm
T-Silver	55.0	ppm	T-Zinc	15000.0	
shifa2 Y	91 0				• •

JBO Page:

RECEIVED

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

> MW-5 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY

PS-SO-5A Source: 00

Site ID:

900

PARK CITY

Cost Code: Lab Number:

8704612

Type: 50

Sample Date:

87/07/24

PS-SO-5A

Time: 14:50

Tot. Cations: Tot. Anions:

Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic	210.0	ppm	T-Barium	75.0	ppm
T-Cadmium	40	ррт	T-Chromium	33.0	ppm
T-Copper	420.0	ррт	ſ−Iron	23000.0	ppm
1-Lead	4400.0	ppm	T-Manganes	1300.0	ррт
Mercury	5.1	ppm	T-Selenium	<30.0	ppm
T-Silver	27.0	ppm	T-Zinc	7000.0	ppm
% Solids	84.7				

87/10/07 16:12

JBO Page

PARK CITY PS-MW-6 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. Toxicity MW-6 T.M. # LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: PARK CITY PS-MW-6

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704290 Type: 40

Sample Date:

87/07/20 Time:

Date of Review and QA Validation Inorganic Review: Organic Review:

Tot. Cations: Tot. Anions:

me/l Cations:

Grand Total:

me/l Anions:

Radiochemistry Review:

Microbiology Review:

Laboratory Analyses

T-Arsenic	50.0	ppm	T-Barium	540.0	ррт
T-Cadmium	20	ррш	T-Chromium	110.0	ppm
T-Copper	61.0	ppm	T-Iron	32000.0	ppm
T-Lead	480.0	ppm	T-Manganes	1500.0	ppm
Mercury	4.0	ppm	T-Selenium	<50.0	ppm
T-Zinc	1500.0		Arsenic HW	<0.2	ppm
Barium HW	0.34	ppm	Cadmium HW	0.06	ppm
Cr (HW)	<0.03	ppm	Lead (HW)	<0.2	ppm
Mercury HW	<0	ppm	Se (HW)	<0.2	ppm
Silver HW	<0.01	ppm	% Solids	14.1	

PARK CITY PS-MW-7 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. ToxICITY T.M

Mw-7 LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-MW-7

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704288 Type:

40

Sample Date:

87/07/20 lime:

Tot. Cations: Tot. Anions:

me/l Cations:

Grand Total:

me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review:

Microbiology Review:

Laboratory Analyses

	•			
T-Arsenic	<100.0	ррт	T-Barium 920.0	ppm
T-Cadmium	42	ppm	T-Chromium 190.0	ppm
T-Copper	210.0		T-Iron 46000.0	ppm
T-Lead	1900.0	ppm	T-Manganes 1700.0	ppm
Mercury	12.0	ppm	T-Selenium <100.0	ppm
T-Zinc	2900.0	ppm	Arsenic HW <0.2	ppm
Barium HW	0.22	mqq	Cadmium HW 0.08	ppm
Cr (HW)	<0.03	ррш	Lead (HW) 0.25	ppm
Mercury HW	0.002	ppm	Se (HW) <0.2	ppm
Silver HW	<0.01	ppm	% Solids 5.9	

PARK CITY PS-MW-7 BUREAU OF SOLID AND HAZAR DOUS WASTE E.P. TOXICTY

T.M. MW-7
LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-MW-7

Site ID:

Source: 00

Cost Code:

365

Lab Number:

8704289 Type:

40

Sample Date:

87/07/20 Time:

.

Tot. Cations:

Grand Total:

Tot. Anions:

me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review:

Organic Review:

Radiochemistry Review: Microbiology Review:

Laboratory Analyses

T-Arsenic	130.0	ppm	T-Barium 800.0	ppm
T-Cadmium	32	ppm	T-Chromium 160.0	ppm
T-Copper	260.0	ppm	T-Iron 40000.0	ppm
7-Lead	2600.0	ppm	7-Manganes 1600.0	ppm
Mercury	6.6	ppm	T-Selenium <80.0	ppm
T-Zinc	3700.0	ppm	Arsenic HW <0.2	ppm
Barium HW	0.27	ppm	Cadmium HW 0.12	рpm
Cr (HW)	<0.03	ppm	Lead (HW) 0.48	ррш
Mercury HW	0.007	ppm	Se (HW) <0.2	ppm
Silver HW	<0.01	ppm	% Solids 16.6	

Approved by

J. Onou

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY MW-8 BUREAU OF SOLID AND HAZAR DOUS WASTE

MW-8 Liquis

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY MW-8

Site ID:

CW87121 Source: 00

Cost Code:

365

Lab Number: Sample Date: 8704587 87/07/30 [ime:

Type:

40

Date of Review and QA Validation Inorganic Review: 87/08/31

Organic Review:

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Radiochemistry Review: 87/08/31

Microbiology Review:

<u>Laboratory Analyses</u>

49 O ppm	T-Barium	180.0	ppm
7 ppm	T-Chromium	70.0	ррт
28.0 ppm	T-Iron	23000.0	ppm
120.0 ppm	T-Manganes	920.0	ppm
1.1 ppm	T-Selenium	<40.0	ppm
<7.0 ppm	T-Zinc	470.0	ppm
28.2			
	7 ppm 28.0 ppm 120.0 ppm 1.1 ppm <7.0 ppm	7 ppm T-Chromium 28.0 ppm T-Iron 120.0 ppm T-Manganes 1.1 ppm Γ-Selenium <7.0 ppm T-Zinc	7 ppm T-Chromium 70.0 28.0 ppm T-Iron 23000.0 120.0 ppm T-Manganes 920.0 1.1 ppm

PARK CITY MW-8 BUREAU OF SOLID AND HAZAR DOUS WASTE

E.P. TOXICITY T.M.

WM-8 TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY MW-8 Description:

Site ID: Source: CW87124 00

Cost Code: 365

8704583 Type: Lab Number: 87/07/30 Time: 09:00

Sample Date:

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review: Organic Review:

Radiochemistry Review: Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic	70.0	mqq	T-Barium	90.0	mqq
T-Cadmium	16	ppm	T-Chromium	110.0	ppm
►T-Copper	60.0	ppm	T-Iron	21000.0	ppm
1-Lead	470.0	ppm	T- M anganes	920.0	ppm
Mercury	0.7	ppm	T-Selenium	<30.0	ppm
_T-Silver	<6.0	ррт	T-Zinc	1800.0	ppm
Arsenic HW	<0.2	ppm	Barium HW	0.23	ppm
Cadmium HW	0.15	ррт	Cr (HW)	<0.03	ppm
Lead (HW)	<0.2	ppm	Mercury HW	<0	ppm
■Se (HW)	<0.2	ppm	Silver HW	<0.01	ppm
% Solids	83.6				

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY/SILVER CREEK PS MW 9 1-5'-2' SOLID AND HAZARDOUS WASTE

> MW-9 (1.5-2 FT.) TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY/SILVER CREEK PS MW 9 1-5'-2' Source: CW87211

Site ID: Cost Code:

365

Lab Number: Sample Date:

Tot. Cations:

Tot. Anions:

Grand Total:

8704421

Type: 87/07/28

me/1 Cations:

me/l Anions:

Time: 12:15

Date of Review and QA Validation Inorganic Review: 87/08/31

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic 460.0 ppm T-Barium 14.0 ppm T-Cadmium T-Chromium 220 ppm 35.0 ppm 490.0 ppm >72000.0 ppm T-Copper T-Iron T-Manganes IT-Lead mgg 0.0028 2000.0 ppm Mercury 0.8 ppm T-Selenium 60.0 ppm T-Silver 59.0 ppm T-Zinc 31000.0 ppm % Solids 90.0

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY/SILVER CREEK PS MW9 3'-3.5'

SOLID AND HAZARDOUS WASTE

MW-9 (3-3.5 FT) TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY/SILUER CREEK PS MW9 3'-3.5'

Site ID:

CW87212 365

Cost Code: Lab Number:

8704422

50 Type:

Source: 00

87/07/28 Time: 12:30

Date of Review and QA Validation Inorganic Review: 87/08/31

Organic Review:

Tot. Cations: Tot. Anions:

Sample Date:

Grand Total:

me/l Cations: me/l Anions:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic	430.0	ppm	ĩ-Barium	66.0	ppm
T-Cadmium	77	ppm	T-Chromium	33.0	ppm
T-Copper	630.0	ppm	Γ−Iron	34000.0	ppm
T-Lead	8300.0	ppm	T-Manganes	1900.0	ppm
Mercury	4.5	ppm	T-Selenium	<30.0	ppm
T-Silver	50.0	ppm	T-Zinc	13000.0	ppm
% Solids	86.0				

Approved by:

Oman. Rough Estimate

SEP 0 1 1987

Bureau of field & Hazardous Waste

MW-9 (29-30 FT.)

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

TAILINGS

Description:

PARK CITY SILVER CREEK PS MW9-29-30

Site ID:

365

DOUS WASTE

Cost Code: Lab Number:

8704420 Type: 50 87/07/28

Sample Date:

Time: 12:20

Tot. Cations: Tot. Anions:

me/l Cations:

Source:

PARK CITY SILVER CREEK PS MW9-29-30

BUREAU OF SOLID AND HAZAR

Grand Total:

me/l Anions:

Inorganic Review:

Organic Review:

Radiochemistry Review: 87/08/31

Date of Review and QA Validation

Microbiology Review:

Laboratory Analyses

530.0 ppm T-Arsenic T-Cadmium 130 ppm 730.0 ppm T-Copper T-Lead 9400.0 ppm Mercury 3.0 ppm T-Silver 53.0 ppm % Solids 83.4

T-Barium mqq 0.81 T-Chromium 29.0 ppm T-Iron >76000.0 ppm T-Manganes 1800.0 ppm T-Selenium 60.0 ppm T-Zinc 19000.0 ppm

approved by:

man Rough Estimate

87/08/31 13:08

RECEIVED

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

MW-10(2-4PT)

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report TAILINGS

Description: Site ID:

PARK CITY MW-10 2-4 CW87126 Source: 00

PARK CITY MW-10 2-4

BUREAU OF SOLID AND HAZAR

Cost Code:

365

DOUS WASTE

Lab Number:

Type: 40 8704585 87/07/31 Time: 09:55

Sample Date: Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation 87/08/31

Inorganic Review:

Organic Review: Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic 370.0 ppm T-Barium 56.0 ppm T-Cadmium T-Chromium 56 ppm 19.0 ppm T-Copper 620.0 ppm T-Iron 11000.0 ppm 8700.0 ppm T-Lead T-Manganes 1800.0 ppm Mercury 4.9 ppm T-Selenium <30.0 ppm T-Silver 56.0 ppm T-Zinc 12000.0 ppm % Solids 83.0

pproved by:

Couch Estimate

87/08/31 13:09

RECEIVED

SEP 0 1 1987

PARK CITY MW-10 BUREAU OF SOLID AND HAZAR DOUS WASTE

Bureau of Solid & Hazardous Waste

MW-10 LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: PARK CITY MW-10

Site ID: CW87122 Source: 00

Cost Code: 365

Lab Number: 8704588 Type: 40

Sample Date: 87/07/31 Time: 09:00

Tot. Cations:

Tot. Anions: me/l Cations:

Grand Total: me/l Anions:

Date of Review and QA Validation

Inorganic Review:

Organic Review: Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

T-Arsenic 830.0 ppm T-Barium 250.0 ppm T-Cadmium T-Chromium <85 ppm <85.0 ppm T-Iron T-Copper 1100.0 ppm 36000.0 ppm T-Lead 12000.0 ppm T-Manganes 1800.0 ppm Mercury 18.0 ppm T-Selenium <420.0 ppm T-Silver 80.0 ppm T-Zinc 14000.0 ppm % Solids 2.8

Approved by:

Cough Estimate

SEP 14 1997

PARK CITY MW-10 1-2 BUREAU OF SOLID AND HAZAR DOUS WASTE

Utat Dant of Waglih Bureau or Sono & mazardous Waste

MW-10 (1-2 FT) TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description: Site ID:

PARK CITY MW-10 CW87125 Source:

Cost Code: Lab Number: 365

8704584 Type: 40

Sample Date:

87/07/31 Time: 09:49

lot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation Inorganic Review: 87/09/01

Organic Review:

Radiochemistry Review: 87/09/01

Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic	210.0	ppm	T-Barium	32.0	ppm
T-Cadmium	63	ppm	T-Chromium	32.0	ppm
T-Copper	360.0	ppm	T-Iron	20000.0	ppm
T-Lead	4800.0	ppm	T-Manganes	1900.0	ppm
Mercury	3.7	ppm	T-Selenium	<32.0	ppm
T-Silver	32.0	ррш	T-Zinc	11000.0	ppm
la Solide	91 0	•			•

CUTTINGS/H20 SAMPLES FROM DRILLING

RECEIVED

OCT 02 1987

PARK CITY SILVER CREEK/PROSPECTOR SQUARE MW-12 Utah Dept. of Hazardous V BUREAU OF SOLID AND HAZAR DOUS WASTF Bureau of Solid & Hazardous Waste DOUS WASTE

MW-12/TAILINGS) =2D

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY SILVER CREEK/PROSPECTOR SQUARE MW-12 = 2 1 Description:

Source: Bite ID:

Cost Code: 365

8704876 Lab Number: Type: 87/08/14 Time: 16:00

Sample Date: ot. Cations:

Tot. Anions: me/l Cations:

Grand Total: me/l Anions: Date of Review and QA Validation Inorganic Review:

Organic Review:

Radiochemistry Review: 87/09/30

Microbiology Review:

Laboratory Analyses

[-Arsenic	51.0	ppm	T-Barium	72.0	ppm
T -Cadmium	7.2	ppm	T-Chromium	33.0	ppm
_T-Copper	22.0	ppm	T-Iron	20000.0	
-Lead	72.0	ppm	T-Manganes	720.0	ppm
Hercury	0.04	ppm	T-Selenium	<12.0	ppm
T-Silver	<0.6	ppm	T-Zinc	190.0	ppm
mrsenic HW	<0.5	ppm	Barium HW	0.15	ppm
Cadmium HW	<0.13	ppm	Cr (HW)	<0.08	ррт
Lead (HW)	<0.5	ppm	Mercury HW	<0	ppm
⊸Se (HW)	<0.5	ppm	Silver HW	<0.03	ppm
& Solids	82.9				

oproved by:

PARK CITY SILVER CREEK/PROSPECTOR SQUARE MW-12 BUREAU OF SOLID AND HAZAR DOUS WASTE

MW-12(CUTTINGS) = 2D - LIQUID

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY SILVER CREEK/PROSPECTOR SQUARE MW-12 = 2) Description:

Site ID: Source:

Cost Code: 365

Lab Number: 8704875 Type:

87/08/14 Time: 16:00 Sample Date:

Tot. Cations:

Tot. Anions: Grand Total:

me/l Cations:

me/l Anions:

Date of Review and QA Validation Inorganic Review: 87/09/30

Organic Review:

Radiochemistry Review: 87/09/30

Microbiology Review:

<u>Laboratory Analyses</u>

T-Arsenic	130.0	ppm	T-Barium	230.0	ppm
T-Cadmium	<23	ppm	T-Chromium	98.0	ppm
T-Copper	54.0	ppm	T-1ron	37000.0	
T-Lead	360.0	ppm	T-Manganes	1600.0	ppm
Mercury	0.58	ppm	T-Selenium	<90.0	ppm
T-Silver	<5.0	* -	T-Zinc	490.0	
Arsenic HW	<0.5	ppm	Barium HW	0.75	
Cadmium HW	<0.13	ppm	Cr (HW)	<0.08	ppm
Lead (HW)	<0.5		Mercury HW		ppm
Se (HW)	<0.5	ppm	Silver HW	<0.03	ppm
% SOLIDS	3.8	• •			

PARK CITY SILVER CREEK / PROSPECTOR SQUARE BUREAU OF SOLID AND HAZAR DOUS WASTE

MW-12 = 2D TAILINGS

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY SILVER CREEK / PROSPECTOR SQUARE Description:

Source: 00

Site ID:

Cost Code: 365

Lab Number: 8704874 Type: Sample Date:

87/08/13 Γime: 11:28

Tot. Cations:

Tot. Anions:

me/l Cations:

me/l Anions: Grand Total:

Date of Review and QA Validation 87/09/30

Inorganic Review:

Organic Review:

Radiochemistry Review: 87/09/30

Microbiology Review:

Laboratory Analyses

T-Arsenic	34.0	ppm	Γ-Barium	54.0	ppm
T-Cadmium	5.3	ppm	T-Chromium	37.0	ppm
⊾T-Copper	21.0	ppm	ſ−Iron	13000.0	ppm
T-Lead	97.0	ppm	T-Manganes	260.0	ppm
Mercury	0.04	ppm	T-Selenium	<12.0	ppm
T-Silver	1.7	ppm	T-Zinc	160.0	ppm
Arsenic HW	<0.5	ppm	Barium HW	0.25	ppm
Cadmium HW	<0.12	ppm	Cr (HW)	<0.08	ррш
Lead (HW)	<0.5	ppm	Mercury HW	<0	ppm
eβe (HW)	<0.5	ppm	Silver HW	<0.03	mqq
Y Solide	82 2				

RECEIVE Liter Dot of France,

PARK CITY SILVER CREEK/PROSPECTOR SQUARE BUREAU OF SOLID AND HAZAR DOUS WASTE

MW-12 = 20 LIQUE

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

PARK CITY SILVER CREEK/PROSPECTOR SQUARE Description:

Site ID:

365

Cost Code: Lab Number: Sample Date:

8704873

Type:

87/08/13

Time: 11:40

Source: 00

Date of Review and QA Validation Inorganic Review: 87/09/30

Organic Review:

Tot. Anions: me/l Cations:

Grand Total:

Tot. Cations:

me/l Anions:

Radiochemistry Review: 87/09/30

Microbiology Review:

Laboratory Analyses

	· ·				
T-Arsenic	140.0	ppm	T-Barium	300.0	ррт
T-Cadmium	<35	ppm	T-Chromium	84.0	ppm
T-Copper	34.0	ppm	T-Iron	31000.0	ppm
T-Lead	150.0	ppm	T-Manganes	300.0	ppm
Mercury	0.1	ppm	T-Selenium	<140.0	ppm
T-Silver	<7.0	ppm	T-Zinc	320.0	ppm
Arsenic HW	<0.5	ppm	Barium HW	0.95	ppm
Cadmium HW	<0.13	ppm	Cr (HW)	<0.08	ppm
Lead (HW)	<0.5	ppm	Mercury HW	<0	ppm
Se (HW)	<0.5		Silver HW	<0.03	ppm
% SOLTES	3.0				

SEP 0 1 1987

Bureau of Solid & Hazardous Waste

PARK CITY PS-SO-LARSON

UTAH STATE HEALTH LABORATORY Environmental Chemistry Analysis Report

Description:

PARK CITY PS-SO-LARSON

Source: 00

Site ID:

900

Cost Code: Lab Number:

8704611

Type: 50

Sample Date:

Tot. Anions:

Grand Total:

87/07/24 Time: 17:55

Tot. Cations:

me/l Cations:

me/l Anions:

Date of Review and QA Validation

Inorganic Review:

87/08/31

Organic Review:

Radiochemistry Review: 87/08/31

Microbiology Review:

Laboratory Analyses

_					
T-Arsenic	150.0	mag	T-Barium	150.0	ppm
T-Cadmium	30	ppm	T-Chromium	210.0	ppm
T-Copper	280.0	ppm	T-Iron	37000.0	ppm
T-Lead	2900.0	ppm	T-Manganes	2800.0	ppm
Mercury	2.5	mag	T-Selenium	<30.0	ppm
T-Silver	20.0	• •	T-Zinc	4000.0	
shifo? X	95 7	• •			

Kough Satimate

ATTACHMENT H
SAMPLING DATA

SAMPLING ROUND I

U.S. ENVIRONMENTAL PROTECTION AGENCY GROUNDWATER DATA

TABLE 1 INORGANIC ANALYTICAL RESULTS, GROUND AND DRAIN WATERS (us 1 PROSPECTOR SQUARE, PARK CITY, UTAH

CASE

[] - indicated concentration detected at less thancontract requried detection

u - indicates - undetected at this concentration

uj - detection limit estimated because not all quality control criteria were

j - estimated value; not all quality control criteria were met

INORGANIC ANALYTI

r - registered data

SAMPLB # TRAFFIC # LOCATION	FS-HW-1S MHC-183 UPGRONT W OF SITE	MHC-184 DEEP V	PS-MW-22 NHC-260 DEEP N. OF SITE	nad-140 ONSITE S.	V-29 -185 N.V. BORY	PS-NY- MB-104 ONSIT3 19	PS-HV-8 MHG-991 ONSITE	7-MV-5 ABB-150 ONSITE	PS-NV-6 NHG-894 ONSITE	PS-MW-7 MEG-893 ONSITE	PS-HV-11 HB-105 N. OF SITE	PS-MW-9 MAH-101 ONSITE E.	PS-HW-10 MEH-103 B. OF SITE	PS-MV-13 MHG-836 BLANK	P: HD DI
Aluminum Antimony	100u 33u	100น 33น	[135] 330	100ս 33u	100u 33u	100u 33u	100u 33u	100u 33u	[136] 33u	100u 33u	100u 33u	100u 33u	100u [54.5]	100u 33u	II
Arsenic	6u	6u	6u	6u	6u	6u	64	6u	6u	QT TOT	6u	6u	23.2	6u	ر. در
Barium	[103]]	[91.6]j	[52.6]n	40ur	[47.1]5	[101]5	40ur	[42.5]	40ur	40ur	[67.4]	[57.4]]	[110]j	40ur	11
Beryllium	4u	44	4u	4u	44	4u	44	43	4u	4u	4u	4u	44	4u	Δ.
Cadmium	4u	411	4u	6.4	4u	4u	17.9	7.1	5.9	8.1	4u	4u	8.6	4u	41
Calcium	354000	220000	64800	226000	21900	184000	228000	206000	247000	269000	330000	206000	140000	740u	65
C tum	9u	9u	9ս	9u	9u	9ս	9ս	9u	9u	9u	9u	9น	9u	9u	91
Conalt	7u	7u	7 <u>u</u>	7 u	7u	7ս	7u	7u	7u	7u	7u	7 u	7u	7u	7ι
Copper	17u	17u	17u	17u	17u	27.8	17u	17u	17u	17u	17u	17u	[18.5]	17u	17
Iron	100u	100u	100u	100u	100u	100u	100ս	100ц	136	100ս	100u	100u	100u	100u	10
Lead	20uj	20uj	[2.75]	2uj	2uj	20u1	Zuj	2uj	2uj	Zuj	2uj	20ս j	43.43	[2.31]]	21
Cyanide	10u	10u	10u	10u	10u	10u	10u	10u	IOu	10u	10u	10u	10u	104	1(
Magnesium	61700	41300	17600	39100	41800	35900	32200	35200	34000	33200	58800	32800	36300	344u	18
Manganese	99.1	434	39.4	317	79.7	[8.8]	441	126	45 6	248	577	1290	1130	6u	41
Mercury Nickel	0.2u	0.2u	0.2u	0.2u	0.2u	0.20	0.2u	0.2u	0.24	0.2u	0.2u	0.2u	0.24	0.2u	0.
Potassium	6u	[7.0]	6น 500น	6u	6u	6u	[8.0]	[12.4]	6u	[10.2]	6u	бu	6u	6u	61
Selenium	[4030] 20u)	[2320]	2u)	8100 20u1	[1570]	[1630] 2u†	7490	5250	5480	7050	[1880]	[2650]	[3130]	500u	50
Silver	[9.2]	2uj 7u	[7.6]	7u	2uj 7u	7u	2uj 7u	20uj 7u	20uj	20uj	20ս յ 7ս	2uj 7	2uj	2uქ 7u	ال 7.
Sodium		72100	11500	54900	51100	114000	48800	57100	7u 44600	7u	44600	7u 68100	[9.7]	7u 1045u	71
Thallium		80u	8u	8u	Bu	8u	8u	8u	44 a u u	53100 Bu	8u	8n	46900 Bu	8 <i>u</i>	8u
Venadium	[21.8]	[18.2]	[15.3]	[13.7]	[13.1]	12u	[19.5]	[17.4]	[18.6]	[19.8]	[15.6]	[14.5]	12u	12u	1:
Zinc	22.5	7u	7u	1940	7u	7u	3210	2460	1210	2200	[9.9]	[7.7]	1950	7u	71

SAMPLING ROUND II

U.S. ENVIRONMENTAL PROTECTION AGENCY GROUNDWATER DATA

EPA-GW-D

TABLE 1

INORGANIC ANALYTICAL RESULTS GROUND AND DRAIN WATERS (µg/1) PROSPECTOR SQUARE, PARK CITY, UTAH SAS #3489H DECEMBER, 1987

SAMPLE # TRAFFIC # LOCATION	PS-MW-1S 8-57454 UPGRAD	PS-MW-1D 8-57451 UPGRAD	PS-MW-2D 8-57460 UPGRAD	PS-DR-1 8-57488 DRAIN	PS-DR-2 8-57497 DRAIN	PS-MW-2 8-57457 ON-SITE
Aluminum	90u	[113]	90u	[94]	90u	90u
Antimony	45uj	45uj	45uj	[46]	45 u j	45uj
Arsenic	2u	2u	2u	3.9	7.8	2u
Barium	[109]je	[79]je	[66]je	[20]je	[81]je	[67]je
Beryllium	2u	2u	2u	2u	2u	2u
Cadmium	[0.7]	1.3	.2u	27 s	1.5	[0.4]
Calcium	359,000	249,000	74,200	208,000	226,000	255,000
Chromium	10u	10u	10u	10u	10u	10u
Cobalt	25u	25u	25u	25u	25u	25u
Copper	8u	[18]	8u	8u	8u	8u
Iron	[57]	101	[23]	301	6510	[26]
Lead	[1.7]	[1.6]	[1.3]	7.0	5.1	[1.8]
Magnesium	62,100	49,300	20,300	28,500	47,400	50,500
Manganese	99	80	[8]	574	2,190	32
Mercury	0.2u	0.2u	0.2u	0.2u	0.2u	0.2u
Nickel	22u	22u	22u	22u	22u	22u
Potassium	[3520]je	[2390]je	[1110]je	[4480]je	[2940]je	[2040]je
Selenium	2u	2u	2u	2.0	2u	2u
Silver	6u	6u	6u	6u	6u	6u
Sodium	310,000	91,110	11,000	44,200	43,300	61,500
Thallium	2u	2u	2u	2u	2u	2u
Vanadium	13u	13u	13u	13u	13u	13u
Zinc	71	85	[17]	2,460	245	22
Cyanide	10uj	10uj	10uj	10uj	10uj	10uj

- s Indicates the value reported was determined by method of standard addition and is estimated.
- j The associated numerical value is an estimated quantity because the amount detected is below the required limits or becasue quality control criterias were not met.
- $u\,$ The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- je Indicates a value estimated or not reported due to presence of interference.
- [] -Amount report is above is above instrument detection limits but below contract required detection limits. The value is an estimation.

TABLE 2 INORGANIC ANALYTICAL RESULTS GROUND WATERS (µg/1) PROSPECTOR SQUARE, PARK CITY, UTAH SAS #3489H

SAMPLE # TRAFFIC # LOCATION	PS-MW-3 8-57463 ON-SITE	PS-MW-4 8-57466 ONSITE TRP	PS-MW-5 8-57469 ON-SITE	PS-MW-6 8-57475 ON-SITE	PS-MW-7 8-57479 ON-SITE	PS-MW-8 8-57472 ON-SITE
Aluminum	90u	90u	90u	90u	429	90u
Antimony	45uj	45uj	45uj	[55]	45uj	45uj
Arsenic	2u	2u	2u	2u	2.1	[3.8]
Barium	[86]je	[47]je	[49]je	[23]je	[22]je	[24]je
Beryllium	2u	2u	2u	2u	2u	2u
Cadmium	[0.2]	3.2	3.1	5.8s	9.8s	16
Calcium	186,000	262,000	189,000	236,000	225,000	203,000
Chromium	10u	10u	10u	10u	10u	15
Cobalt	25u	25u	25u	25u	25u	25u
Copper	8u	8u	8u	8u	8u	8u
Iron	100	145	[32]	[89]	442	[21]
Lead	[2.5]	[3.1]	[2.7]	[2.0]	[4.0]	9.3
Magnesium	36,900	47,800	34,800	33,200	29,200	30,300
Manganese	[5]	2,250	276	287	70	472
Mercury	0.2u	0.2u	0.2u	0.2u	0.2u	0.2u
Nickel	22u	22u	22u	22u	22u	22u
Potassium	[1940]je	6930je	[3390]je	[4300]je	5340je	6160je
Selenium	2u	2u	2u	2u	2.4	2u
Silver	6u	6u	6u	6u	6u	6u
Sodium	134,000	62,600	55,200	43,800	50,300	49,900
Thallium	2u	2u	2u	2u	2u	2u
Vanadium	13u	13u	13u	13u	13u	13u
Zinc	[16]	759	899	1,300	2,150	2,890
Cyanide	10uj	10uj	10uj	10uj	10uj	10uj

- u The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- je Indicates a value estimated or nor reported due to presence of interference. (Used when serial dilutions results are not within required limits).
- uj Detection limit is estimated because quality control criteria were not met.
- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.
- ${\bf s}$ Indicates the value reported was determined by method of standard addition and is estimated.

TABLE 3 INORGANIC ANALYTICAL RESULTS GROUND WATERS (µg/1) PROSPECTOR SQUARE, PARK CITY, UTAH SAS #3489H

SAMPLE # TRAFFIC # LOCATION	PS-MW-9 8-57482 ON-SITE	PS-MW-10 8-57491 ON-SITE	PS-MW-11 8-57494 ON-SITE	8-57500		PS-MW-14 8-53624 SPIKE	PS-MW-17 8-57485 DUP MW-9
Aluminum	[123]	90u	1000	90u	90u	90u	90u
Antimony	45uj	[46]	45u	45uj	45uj	45uj	45uj
Arsenic	3.4	11	2u	2u	2.0	9.4	5.5
Barium	[43]je	[94]je	[42]je	[2]je	[3]je	2uje	[48]je
Beryllium	2u	2น	2u	2u	2น	10	2u
Cadmium	0.2u	3.8	[0.9]	[0.3]	0.2u	2.7	[0.4]
Calcium	164,000	131,000	204,000	[235]	[39]	[43]	178,000
Chromium	10u	10u	10u	11	10u	17	10u
Cobalt	25u	25u	25u	25u	25u	25u	25u
Copper	8u	8u	8u	8u	8u	[17]	[10]
Iron	476	[28]	1010	[80]	[29]	[47]	164
Lead	7.4	22	5.0	5.0	[2.9]	10	7.6
Magnesium	26,800	38,500	38,100	[81]	75u	75u	28,600
Manganese	1400	442	320	3u	3u	[10]	1450
Mercury	0.2u	0.52	0.2u	0.2u	0.2u	0.35	0.2u
Nickel	22u	22u	22u	22u	22u	22u	22u
Potassium	[2190]je	[1950]je	[1930]je	372uje	372uje	372uje	[2330]je
Selenium	2u	2u	2u	2u	2u	2.5	2u
Silver	6u	6u	6u	6u	6u	6u	6u
Sodium	48,700	40,900	34,300	[185]	[170]	[187]	55,200
Thallium	2 u	2ս	2u	2u	2u	2u	2u
Vanadium	13u	13u	13u	13u	13u	[13]	13u
Zinc	[16]	697	31	13u	[13]	48	[19]
Cyanide	10uj	10uj	10uj	10uj	nr	nr	10uj

- u The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- uj Detection limit is estimated because quality control criteria were not
 met.
- je Indicates a value estimated or nor reported due to presence of interference. (Used when serial dilutions results are not within required limits).
- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.
- nr Analysis was not required.

PERFORMANCE EVALUATION SAMPLE

BLIND SPIKE SOLUTION PREPARED AS A COMPARABILITY STANDARD FOR CASE #3489B ANALYSIS OF 18 LOW WASTER SAMPLES FROM PROSPECTOR SQUARE, PARK CITY, UTAB

PARAHETER	TRUE VALUE	AVERAGE	95% CONFIDENCE INTERVAL
Aluminum	50	52.26	42.3-62.3
Arsenic	10	9.92	7.72-12.1
Beryllium	10	9.89	8.61-11.2
Cadmium	2.5	2.38	1.99-2.77
Cobalt	10	9.90	8.55-11.3
Chromium	10	9.81	7.77-11.8
Copper	10	10.02	8.78-11.3
Iron	10	10.09	8.33-11.9
Mercury	.5	. 490	.338642
Manganese	10	9.92	8.76-11.1
Nickel	10	9.99	8.41-11.6
Lead	10	9.96	8.28-11.6
Selenium	2.5	2.31	1.50-3.12
Vanadium	25	25.6	21.3-29.9
Zinc	10	10.07	8.59-11.5

Statistics using sample preparation instructions (dil: 1:10)

U.S. EPA QC sample used - Trace Metal I, 1990, VP 386.

All values are expressed as µg/l.

PEFORMANCE SAMPLE COMPARISON (ug/1)

	TRUE VALUE	CLP	COMMENT	STATE	COMMENT
Aluminum	50	90u	*	<400	*
Arsenic	10	9.4	+	8.0	+
Beryllium	10	10	+	9.0	+
Cadmium	2.5	2.7	+	3.0	+
Cobalt	10	25u	*	<20	*
Chromium	10	17	51% diff	10	+
Copper	10	[17]	*	<20	*
Iron	10	[47]	*	<20	*
Mercury	0.5	0.35	+	0.3	50% diff
Manganese	10	[10]	+	9.0	+
Nickel	10	22u	*	10	+
Lead	10	10	+	10	+
Selenium	2.5	2.5	+	4.0	46% diff
Vanadium	25	[13]	*	-	NR
Zinc	10	48	*	<30	*

- *- Instrument detection limits (IDL) greater than the spike concentrations. Calibration linearity at IDL tends to be questionable since no standards are analyzed at those low concentrations. (i.e. CLP results for iron and zinc).
 - +- Results within 25% of each other.
- []- Results reported are above the instrument detection limits, but below the contract required detection limits.

When comparing the results from the State of Utah to the Contract Laboratory Program (CLP), the following calculation was used, (which is used to determine difference in duplicate samples from the CLP users guide), ((s-d)/((s+d)/2))x100 where s=sample and d=duplicate. The State of Utah did not analyze the following elements; antimony, thallium, and vanadium. The percent difference for samples and duplicates should fall within 25% difference of each other for duplicates on in house samples.

SAMPLING ROUND III

U.S. ENVIRONMENTAL PROTECTION AGENCY GROUNDWATER DATA

EPA-GW-11

TABLE 1

INORGANIC ANALYTICAL RESULTS, GROUND AND DRAIN WATERS (µg/1) PROSPECTOR SQUARE, PARK CITY, UTAH CASE 9054/3671-H

SAMPLE # TRAFFIC # LOCATION	PS-MW-1D MHL-424 DEEP W OF SITE	PS-MW-2S MHL-426 NW BDRY	PS-MW-2D MHL-423 DEEP SW OF SITE	PS-MW-3 MHL-427 ONSITE N	PS-MW-4 MHL-429 ONSITE S
Aluminum	100u	100u	100u	100u	100u
Antimony	25u	25u	25u	25u	25u
Arsenic	3u	3u	3u	3u	3u
Barium	[60]	[51]	[53]	[63]	45u
Beryllium	4u	4u	4u	4u	4u
Cadmium	0.5u	1.0e	0.5u	0.5u	0.5u
Calcium	248000je	220000je	67500je	153000je	220000je
Chromium	9uje	9uje	9uje	9uje	9uje
Cobalt	9 u	9u	9 u	9u	9u
Copper	12u	[20]	[12]	12u	26
Iron	100u	100u	100u	100u	259
Lead	2u	[2.3]	[8.2]	[3.2]	2u
Cyanide	0.01u	0.01u	0.01u	0.01u	0.01u
Magnesium	47600je	42100je	18100je	29500je	38200je
Manganese	[14]je	80je	8uje	8uje	2750je
Mercury	0.2jr	0.4jr	0.2ujr	0.4jr	0.2ujr
Nickel	[13]	7 u	7 u	7u	[9.5]
Potassium	[2500]	[2200]	[1000]	[2300]	6600
Selenium	2u	2u	2u	2u	2uj*
Silver	8u	8u	8u	8u	8u
Sodium	83600je	48000je	9370je	104000je	71400je
Thallium	7u	7 u	7u	70u	7 u
Vanadium	[20]	[17]	10u	[12]	[21]
Zinc	20u	20u	20u	20u	361

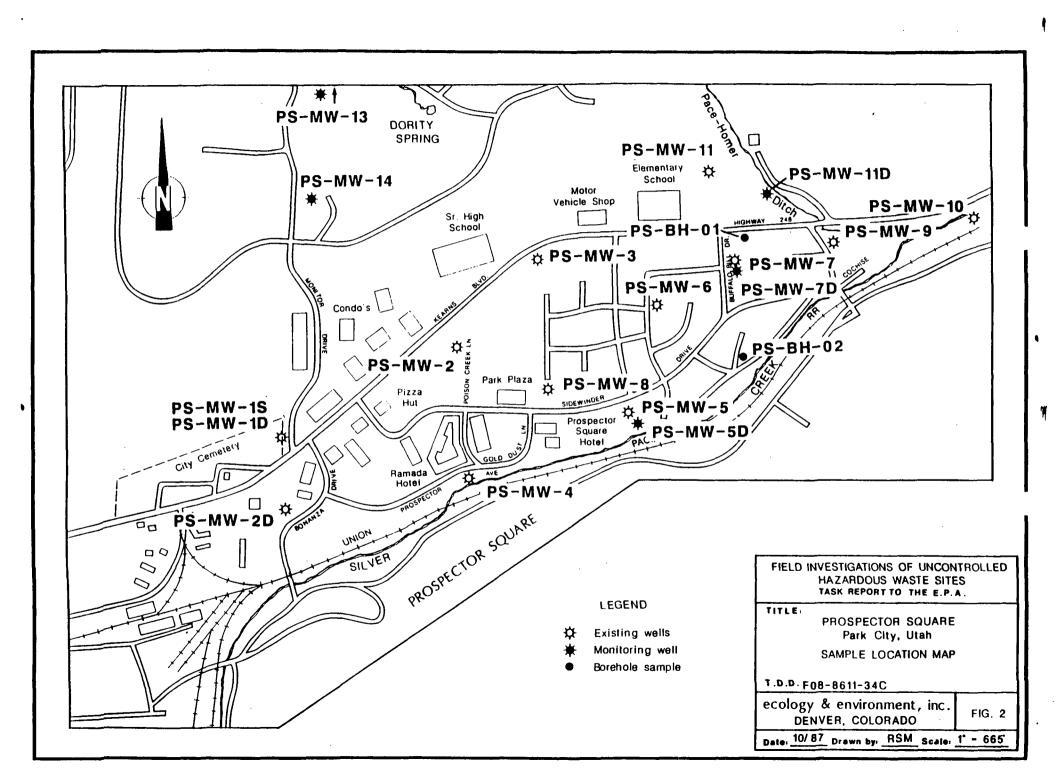
- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.
- u The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- uj Detection limit is estimated because quality control criteria were not met.
- j The associated numerical value is an estimated quantity because the amount detected is below the required limits or because quality control criteria were not met.
- r Quality control indicates that data is <u>not</u> usable (compound may or may not be present). Resampling and reanalysis is necessary for verification. je Indicates a value estimated or nor reported due to presence of interference. (Used when serial dilutions results are not within required limits).
- jr Indicates spike recovery is not within control limits. Indicates the value reported is an estimation.
- j* Indicates duplicate analysis is not within control limits. Indicates the value reported is an estimation.
- e (itself) indicates a value estimated due to the presence of interference (low spike recovery during AA analysis).

TABLE 1 INORGANIC ANALYTICAL RESULTS, GROUND AND DRAIN WATERS (µg/1) PROSPECTOR SQUARE, PARK CITY, UTAH CASE 9054/3671-H

SAMPLE # TRAFFIC # LOCATION	PS-MW-5S MHL-435 ONSITE	PS-MW-5D MHL-436 ONSITE	PS-MW-6 MHL-430 ONSITE	PS-MW-7S MHL-431 ONSITE	PS-MW-7D MHL-432 ONSITE	PS-MW-8 MHL-428 ONSITE
	100u	100u		[150]	100u	100u
Aluminum			100u			
Antimony	25u	25u	25u	25u	25u	25u
Arsenic	3u	3u	3u	3u	3u	3u
Barium	45u	[78]	45u	[88]	45u	45u
Beryllium	4u	4u	4u	4u	4u	4u
Cadmium	0.5u	0.5u	5.4	24	0.5u	45
Calcium	199000je	108000je	198000je	220000je	41 8 00je	183000je
Chromium	9uje	9u	9uje	9uje	9uje	9uje
Cobalt	9u	9u	9u	9uje	9u	9u
Copper	12u	12u	[14]	[14]	12u	[19]
Iron	100u	100u	100u	151	100u	100u
Lead	10	[3]	[2.6]	12	[3.4]	[2.9]
Cyanide	0.01u	0.01u	0.01u	0.01u	0.01u	0.01u
Magnesium	36500je	25900je	27300je	27400je	11000je	26100je
Manganese	107je	487je	80je	29je	162je	114je
Mercury	0.4jr	0.2jr	0.3jr	0.4jr	0.2ujr	0.3jr
Nickel	7 u	7u Tu	7u Tu	[7.7]	7u	7 u -
Potassium	[2300]	[1400]	[30000]	5100	500u	5800
Selenium	20u	2u	2u	2u	2u	2u
Silver	8u	8u	8u	8u	8u	8u
Sodium	40800je	15000je	33800je	46600je	10300je	37400je
Thallium	7u	7u -	7u	7u	7u -	7u
Vanadium	[13]	10u	[14]	[15]	10u	[13]
Zinc	74	20u	1060	2180	20u	2160

- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.
- u The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- uj Detection limit is estimated because quality control criteria were not met.
- j The associated numerical value is an estimated quantity because the amount detected is below the required limits or because quality control criteria were not met.
- r Quality control indicates that data is <u>not</u> usable (compound may or may not be present). Resampling and reanalysis is necessary for verification.
- je Indicates a value estimated or nor reported due to presence of interference. (Used when serial dilutions results are not within required limits).
- jr Indicates spike recovery is not within control limits. Indicates the value reported is an estimation.
- j^* Indicates duplicate analysis is not within control limits. Indicates the value reported is an estimation.
- e (itself) indicates a value estimated due to the presence of interference (low spike recovery during AA analysis).

TABLE 1 INORGANIC ANALYTICAL RESULTS, GROUND AND DRAIN WATERS (µg/1) PROSPECTOR SQUARE, PARK CITY, UTAH CASE 9054/3671-H


SAMPLE # TRAFFIC # LOCATION	PS-MW-9 MHL-433 ONSITE E	PS-MW-10 MHL-441 E OF SITE	MHL-437	PS-MW-11D MHL-438 NE OF SITE	PS-MW-13 MHL-422 N OF SITE	PS-MW-14 MHL-425 N OF SITE
Aluminum	100u	100u	100u	100u	641	100u
Antimony	25u	25u	25u	25u	25u	25u
Arsenic	3u	9.0	3u	3u	3u	3u
Barium	45u	[88]	45u	[48]	[62]	[84]
Beryllium	4u	4u	4u	4u	4u	4u
Cadmium	28e	8.9e	1.2e	1.5e	0.5u	0.5u
Calcium	173000je	113000je	188000je	88800je	256000je	229000je
Chromium	9uje	9uje	9uje	9uje	72je	88je
Cobalt	9u	9u	9u	9u	9u	9u
Copper	12u	[22]	[13]	12u	12u	[20]
Iron	595	100u	115	100u	100u	100u
Lead	6.3	20	[2.9]	11	5	8.5s
Cyanide	0.01u	0.01u	11	0.01u	0.01u	0.01u
Magnesium	29100je	32800je	34800je	22800je	377uje	377uje
Manganese	889je	389je	141je	482je	8uje	8uje
Mercury	0.3jr	0.2jr	0.3jr	0.2jr	0.2jr	0.2jr
Nickel	7 u	7ս	7 u	7u	7u	[13]
Potassium	[1900]	[1200]	[1300]	[1200]	5400	6100
Selenium	2u	2u	2u	2u	2u	2u
Silver	8u	8u	8u	8u	8u	8u
Sodium	47400je	33800je	27900je	14700je	13100je	29100je
Thallium	7ս	7 u	7u	7u	7 u	7ս
Vanadium	[13]	[11]	[137]	10u	[13]	[11]
Zinc	20u	614	20u	20u	20u	20u

- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.
- u The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- uj Detection limit is estimated because quality control criteria were not met.
- j The associated numerical value is an estimated quantity because the amount detected is below the required limits or because quality control criteria were not met.
- r Quality control indicates that data is <u>not</u> usable (compound may or <u>may not</u> be present). Resampling and reanalysis is necessary for verification.
- je Indicates a value estimated or nor reported due to presence of interference. (Used when serial dilutions results are not within required limits).
- jr Indicates spike recovery is not within control limits. Indicates the value reported is an estimation.
- j* Indicates duplicate analysis is not within control limits. Indicates the value reported is an estimation.
- e (itself) indicates a value estimated due to the presence of interference (low spike recovery during AA analysis).

TABLE 1 INORGANIC ANALYTICAL RESULTS, GROUND AND DRAIN WATERS (µg/l) PROSPECTOR SQUARE, PARK CITY, UTAH CASE 9054/3671-H

	PS-MW-16	PS-MW-17		
SAMPLE #	MHL-439	MHL-440	PS-MW-19	PS-SW-1
TRAFFIC #	MW-11D	RINSATE	MHL-442	MHL-434
LOCATION	DUPLICATE	BLANK	PE	DRAIN E OF PARK
Aluminum	100u	100u	100u	100u
Antimony	25u	25u	25u	25u
Arsenic	3u	3u′	8.2	5.2
Barium	[48]	45u	45u	45u
Beryllium	4u ,	4u /	9.4	4u
Cadmium	0.5u ∕	2.4	2.4	24
Calcium	87900je	718je	718u	197000je
Chromium	9uje	9uje	[9.5]je	9uje
Cobalt	9 u	9u	[9.2]je	9u
Copper	[19] 🗸	12u	[20]	[16]
Iron	100u	100u	100u	491
Lead	[4.5]./	5.6a	13	11
Cyanide	0.01u	0.01u	0.01u	0.01u
Magnesium	22600je	277uje	377uje	28700je
Manganese	478je	8uje	8uje	875je
Mercury	0.8jr/	0. 8j r	0.75njr	0.3jr
Nickel	[7.4]	7 u	7u	7u ·
Potassium	[1200]	500u	500u	[4000]
Selenium	2u	2u	2u	2u
Silver	8u	8u	8u	8u
Sodium	14400je	11660je	1166uje	66300je
Thallium	7u	7 u	7u	7 u
Vanadium	10u	10u	[16]	[17]
Zinc	20u	20u	20u	2050

- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.
- u The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- uj Detection limit is estimated because quality control criteria were not
 met.
- j The associated numerical value is an estimated quantity because the amount detected is below the required limits or because quality control criteria were not met.
- r Quality control indicates that data is \underline{not} usable (compound may or may not be present). Resampling and reanalysis \overline{is} necessary for verification.
- je Indicates a value estimated or nor reported due to presence of interference. (Used when serial dilutions results are not within required limits).
- jr Indicates spike recovery is not within control limits. Indicates the value reported is an estimation.
- $j\star$ Indicates duplicate analysis is not within control limits. Indicates the value reported is an estimation
- e (itself) indicates a value estimated due to the presence of interference (low spike recovery during AA analysis).

SAMPLING ROUND IV

U.S. ENVIRONMENTAL PROTECTION AGENCY GROUNDWATER DATA

EPA-GW-IV

DRAFT

PROSPECTOR SQUARE PARK CITY, UTAH GROUND WATER ANALYTICAL RESULTS FOURTH ROUND SAMPLING APRIL, 1988

µg/l CASE #9286/3757H

SAMPLE NUMBER TRAFFIC NUMBER LOCATION	PS-MW-1S MHL-601 BACKGROUND	PS-MW-1D MHL-606 BACKGROUND	PS-MW-2D MHL-607 BACKGROUND	PS-MW-2 MHL-608 ONSITE	PS-MW-3 MHL-616 ONSITE
Aluminum	100u	100u	100u	100u	100u
Antimony	17u	17u	17u	17u	17u
Arsenic	2u	2u	2.7u	2u	2u
Barium	[98]	390jr	[57]	[54]	[70]
Beryllium	2u	2u	2u	2u	2u
Cadmium	1.1u	1.1u	1.1u	1.1u	1.1u
Calcium	294,000	230,000	65,800	210,000	157,000
Chromium	4u	4u	4u	4u	[4.5]
Cobalt	6u	6u	6u	6u	6u
Copper	[16]	[12]	[10]	[11]	34
Cyanide	10u	10u	10u	10u	10u
Iron	100u	138jr	192jr	100u	100u
Lead	30u	3u	6.5jr	3u	3u
Magnesium	51,800	44,500	18,200	40,300	31,300
Manganese	28	[14]	7u	[7.3]	[7.8]
Mercury	0.2u	0.2u	0.2u	0.2u	0.2u
Nickel	11u	11u	11u	11u	11u
Potassium	[3500]	[1600]	[500]	[1400]	[1600]
Selenium	2u	2u	2u	2u	2u
Silver	5u	15jr	5u	5u	5u
Sodium	25,100	80,200	9,300	48,600	10,300
Thallium	70u	7u	7u	7ս	7 u
Vanadium	4u	4u	4u	4u	4u
Zinc	[14]	48jr	[9.1]	7u	9.1jr
Alkalinity	135	102	110	112	142
Chloride	860	437	40	332	292
Sulfate	260	238	780	226	490

 $u\,$ - The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.

^{[] -} Compound is present and was detected. However, the quantity is below the contract required detection limit.

jr - Indicates spike recovery is not within control limits. Indicates the value reported is an estimation.

DRAFT

PROSPECTOR SQUARE PARK CITY, UTAH GROUND WATER ANALYTICAL RESULTS FOURTH ROUND SAMPLING APRIL, 1988 ug/1 CASE #9286/3757H

SAMPLE NUMBER TRAFFIC NUMBER LOCATION	PS-MW-4 MHL-609 ONSITE	PS-MW-5 MHL-610 ONSITE	PS-MW-5D MHL-611 ONSITE	PS-MW-6 MHL-615 ONSITE	PS-MW-7 MHL-612 ONSITE	PS-MW-7D MHL-613 ONSITE
Aluminum	100u	100u	100u	100u	100u	100u
Antimony	17u	17u	17u	17u	17u	17u
Arsenic	2u	2u	2u	2u	2u	2u
Barium	[20]	[29]	[61]	[20]	[18]	[39]
Beryllium	2u	2u	2u	2u	2u	2u
Cadmium	5.5u	3.6jr	1.1u	5.5u	5.5u	1.1u
Calcium	177000	165000	99800	208000	216000	37200
Chromium	4u	[5.2]	4u	[5.1]	4u	4u
Cobalt	6u	6u	6u	6u	6u	6u
Copper	[12]	[12]	[14]	[18]	[14]	9u
Cyanide	18	16	10u	10u	.10u	10u
Iron	100u	121jr	100u	100u	100u	100u
Lead	3u	3u	3u	3u	3u	5.4jr
Magnesium	30,700	29,300	24,000	29500	27200	10000
Manganese	44	47	82	63	[14]	383
Mercury	0.2u	0.2u	0.2u	0.2u	0.2u	0.2u
Nickel	11u	[13]	11u	11u	11u	11u
Potassium	5300	[2500]	[700]	[2900]	[3500]	500u
Selenium	2u	2u	2u	2u	2u	2u
Silver	5u	5u	5u	5u	5u	5u
Sodium	50,900	46,000	14,200	38,500	47,200	9420
Thallium	7u	7 u	7u	7u	7 u	7 u
Vanadium	4u	4u	4u	4u	4u ˙	4u
Zinc	2290jr	1780jr	[8.8]	1540jr	2030jr	[8.1]
Alkalinity	55.0	58.0	108	50	608	115
Chloride	145	125	36.0	112	112	120
Sulfate	225	484	258	990	212	31

u - The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.

^{[] -} Compound is present and was detected. However, the quantity is below the contract required detection limit.

jr - Indicates spike recovery is not within control limits. Indicates the value reported is an estimation.

DRAFT

PROSPECTOR SQUARE PARK CITY, UTAH GROUND WATER ANALYTICAL RESULTS FOURTH ROUND SAMPLING APRIL, 1988 µg/1

μg/1 CASE #9286/3757H

SAMPLE NUMBER TRAFFIC NUMBER LOCATION	PS-MW-8 MHL-614 ONSITE	PS-MW-9 MHL-621 DNGRDNT	PS-MW-10 MHL-624 DNGRDNT	PS-MW-11 MHL-629 DNGRDNT	PS-MW-11D MHL-630 DNGRDNT
Aluminum	100u	100u	100u	100u	100u
Antimony	17u	17u	17u	17u	17u
Arsenic	2u	2.4	[9.6]	2u	2.6
Barium	[20]	[40]	[88]	717jr	[56]
Beryllium	2u	2u	2u	2u	2u
Cadmium	20jr	1.1u	5.0jr	1.1u	1.1u
Calcium	93,000	200,000	141,000	165,000	81,000
Chromium	4u	. 4u	[4.1]	4u	4 u
Cobalt	6u	6u	6u	6u	6u
Copper	[15]	[23]	[22]	25	29
Cyanide	14	10u	10u	10 <u>u</u>	10u
Iron	100u	918jr	114jr	100u	118jr
Lead	3u	3u	31jr	3u	3.1jr
Magnesium	27900	33600	38800	30200	20900
Manganese	115	1110	1220	118	244
Mercury	0.2u	0.2u	0.2u	0.2u	0.2u
Nickel	11u	11u	11u	11u	11u
Potassium	[4800]	[1600]	[1300]	[500]	500u
Selenium	2u	2u	2u	2u	2u
Silver	[6.7]	5u	5u	5u	5u
Sodium	42900	59000	40900	24200	13900
Thallium	7 u	7u	7u	7u	7u
Vanadium	4u	4u	4u	4u	4u
Zinc	2780jr	[16]	1930jr	38jr	[13]
Alkalinity	50.0	195	215	160	652
Chloride	170	207	95	167	35
Sulfate	512	189	251	244	122

 $[\]boldsymbol{u}$ - The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.

^{[] -} Compound is present and was detected. However, the quantity is below the contract required detection limit.

jr - Indicates spike recovery is not within control limits. Indicates the value reported is an estimation.

DRAFT

PROSPECTOR SQUARE PARK CITY, UTAH GROUND WATER ANALYTICAL RESULTS FOURTH ROUND SAMPLING APRIL, 1988 µg/1

CASE #9286/3757H

SAMPLE NUMBER TRAFFIC NUMBER LOCATION	PS-MW-13 MHL-632 FIELD BLANK	PS-MW-13 MHL-631 DUPLICATE	PS-DR-1 MHL-620 DOWNGRADIENT	PS-TB-1 MHL-602 TRIP BLANK
Aluminum	100u	100u	100u	100u
Antimony	17u	17u	17u	17u
Arsenic	2u	2u	2u	2u
Barium	5u	[51]	[16]	334jr
Beryllium	2u	2u	2u	2u
Cadmium	11u	1.1u /	12jr	1.1u
Calcium	500u	85800	215000	500u
Chromium	4u	4u	[5.0]	4u
Cobalt	6u	6u	6u	6u
Copper	[9.5]	[21]	[19]	[14]
Cyanide	10u	10u	10u	NR
Iron	100u	100u	287	100u
Lead	3.1jr	3.5jr	4.4jr	3u
Magnesium	500u	22200	32,600	500u
Manganese	7u	259	531	7u
Mercury	0.2u	0.2u	0.2u	0.2u
Nickel	11u	11u	11u	11u
Potassium	500u	500u	[3400]	500u
Selenium	2u	2u	2u	2u
Silver	5u	5u	5u	5u
Sodium	[692]	14700	47300	597u
Thallium	7u	7u	7u	7u
Vanadium	4u	4u	4u	4u
Zinc	[9.4]	[9.4]/	2860jr	7u
Alkalinity	2u	155 ~	80.0	NR
Chloride	9.50	39	197	NR
Sulfate	10u	122	522	NR

- u The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.
- jr Indicates spike recovery is not within control limits. Indicates the value reported is an estimation.
- NR Compound not analyzed for.

SAMPLING ROUND I

U.S. ENVIRONMENTAL PROTECTION AGENCY SURFACE WATER DATA

EPA-SW-I

TABLE 1 PROSPECTOR SQUARE INORGANIC ANALYSIS FOR SURFACE WATER SAMPLES PARK CITY, UTAH (ug/l total)

UNHET

APRIL 29, 1987

SAMPLE #	PS-SW-1	PS-SW-2	PS-SW-3	PS-SW-4	PS-SW-5	PS-SW-6
TRAFFIC #	MHG-651	MHG-646	MHG-653	MHG-781	MHG-654	MHG-649
LOCATION	UPGRDNT	UPGRDNT	UPGRDNT	DNGRDNT	DNGRDNT	DUPLICATE
	UPGRDNT 140u 60u 10 70u 3u 4u 95,700 10u 30u 11u 120 5u 10u 31,100 129 .2u 24u [1900] 5ur 17,500 92 10ur					DUPLICATE 140u 60u 10u 70u 3u 4u 104,000 10u 30u [19] 60u 17 10u 29,500 65 .2u 24u [1800] 5ur 23,300 116*r 10ur
Tin	50	40u	40ur	40u	40u	40u
Vanadium	20u	20u	20ur	20u	20u	20u
Zinc	29	73	871	525	755	50

nr - Not required by contract at this time.

u - Indicates element was analyzed for but not detected.

r - Data is unusable due to spike recovery values.
* - Indicates duplicate analysis is not within control limits.

[] - Element was identified in the sample, but concentration is les than CRDL.

b - Compound was detected in the blank. Quantity reported is >5x the amount found in the blank.

DRAFT TABLE 2

PROSPECTOR SQUARE INORGANIC ANALYSIS FOR SURFACE WATER SAMPLES PARK CITY, UTAH (ug/l dissolved) APRIL 29, 1987

SAMPLE #	PS-SW-1	PS-SW-2	PS-SW-3	PS-SW-4	PS-SW-5	PS-SW-6	PS-SW-7
TRAFFIC #	MHG-657	MHG-658	MHG-644	MHG-652	MHG-779	MHG-655	MHG-650
LOCATION	UPGRDNT	UPGRDNT	UPGRDNT	DNGRDNT	DNGRDNT	DUPLICATE	BLANK
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Sodium Silver Thallium Tin Vanadium Zinc	140u 60u 10u 70u 3u 4u 94,200 10u 30u 11u 60u 5u 29,800 158 .2u 24u [1800] 5ur 17,300 99*r 10ur 40u 20u 32	140u 60u 10u 70u 3u 4u 107,000 10u 30u [13] 110 27s 30,500 72 .2u 24u [1700] 5ur 23,300 10ur* 10ur 40u 20u 63	140u 60u 10u 70u 3u 4u 78,400 10u 20u 30 60u 7 5,500 122 .4u 24u [8000] 5ur 95,800 117 10ur 40u 20u 62	140u 60u 10u [80] 3u 4u 83,000 10u 30u [23] 60u 9 17,100 259 .2u 24u [2700] 5ur 106,000 95*r 10ur 40u 20u 68	140u 60u 10u 70u 3u 4u 123,000 10u 30u [16] 60u 8 27,200 353 .2u 24u [2400] 5ur 46,700 10ur 10ur 40u 20u 559	140u 60u 10u 70u 3u 4u 104,000 10u 30u [14] 120 27 29,300 73 .2 24u [1800] 5ur 25,100 107*r 10ur 40u 20u 76	140u 60u 10u 70u 3u 4u 1900u 10u 30u [18] 60u 5u 1400u 11u .2u 24u [1400]u 5ur 1500u 116r 10ur 40u 20u 15u

u - Indicates element was analyzed for but not detected.

⁻ Data is unusable, due to spike recovery.
* - Indicates duplicate analysis is not within control limits.

^{[] -} Element was identified in the sample, but concentration is less than CRDL.

s - Indicates value determined by method of standard addition.

TABLE 3 PROSPECTOR SQUARE INORGANIC ANALYSIS FOR SEDIMENT SAMPLES

DRAFT

PARK CITY, UTAH (mg/kg) APRIL 29, 1987

	PS-SE-1	PS-SE-2	PS-SE-3	PS-SE-4	PS-SE-5	PS-SE-6
	NOT	MHG-647	MHG-645	MHG-782	MHG-780	MHG-648
	TAKEN	UPGRDNT	UPGRDNT	LATERAL	DNGRDNT	DUPLICATE
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Cyanide Magnesium Manganese Mercury Nickel Potassium Selenium Sodium Silver Thallium Tin Vanadium Zinc % Solids		20,000 105ur 159 [77]r 5.3ur 23r 36,800 44r 53ur 293r 24,500 3786 nr 9,900 1430r 1.1 42u [3180] 8.8u 2650u 18u 71ur 35ur 4710 28%	22,300 77r 2173 263r 2.3ur 43r 86,600 186r 23ur 280r 54,500 5900 nr 27,500 5900 nr 27,500 16 19u 4870 13 1160u 18 7.7u 31ur 262r 7390 64%	25,00 130r 229 [200]r 3.5ur 33r 26,300 52r 35ur 191r 30,600 3910 nr 14,500 1430r 24 28ur [4950] 5.9u 1770u 28r 12u 47ur [48]r 6130 42%	17,500 154r 256 213r 2.6ur 45r 30,600 50r 26ur 343r 36,400 5960 nr 10,900 1570r 8.5 20u [3160] 6.85 1280u 31r 8.5u 34ur [38]r 8320 58%	20,800 72ur 94 [169]r 17r 27,900 39r 36ur 167r 25,500 2440 nr 9780 1790 .73 29u [4590] 6u 1810u 12u 48ur [36]r 3670 41%

nr - Not required by contract at this time.

u - Indicates element was analyzed for but not detected.

r - Data is unusable due to spike recovery.
[] - Element was identified in the sample, but concentration is less than CRDL.
* - Indicates duplicate analysis is not within control limits.

SAMPLING ROUND II

U.S. ENVIRONMENTAL PROTECTION AGENCY SURFACE WATER DATA

45

DRAFT COY

EPA-SW-II

PROSPECTOR SQUARE FARK CITY, UTAH SECOND ROUND SURFACE VATER DATA JULY, 1987 (ug/l)

Sample Number Traffic Number Type	PS-SV-1 MHG-693 TOTAL	PS-SV-1 NEG-694 DSSLVD	PS—SV—2 MBG—695 TOTAL	PS-SV-2 MHG-697 DSSLVD	PS-SV-3 MRG-656 TOTAL	PS-SV-3 NBG-686 DSSLVD
Aluminum	[71]	[16]	[32]	[20]	[60]	[32]
Antimony	25u	2 5 u	25u	25u	25 u	2 5 Ģ
Arsenic	18	17	12	11	1 0 u	1 0 u
Barium	[22]	[22]	[30]	[28]	[51]	[49]
Beryllium	iu	1u	lu	Iu	lu	1u
Cadmium	4 u	4 u	4u	4u	4 μ	40
Calcium	118,000	120,000	120,000	120,000	78,900	79,400
Chromium	4u	≜u	4ս	4 u	4 u	4u
Cobalt	9u	9u	9u	9u	9u	9u
Copper	56	28	[16]	[11]	[11]	[6.1]
Cyanide	10น	NR	10u	NR.	10u	NCR.
Iron	[90]	24u	[65]	24u	192	[29]
Lead	5u -	5a	13	14	42	Su
Magnesium	35,400	36,300	33,200	33,800	17,200	17,300
Manganese	86	60 [°]	33	23	28	18
Mercury	0.2u	0.2u	0.2u	0.2n	0.2և	0.2u
Nickel	8 : 1	8u	8u	8n	8u	8 u
Potassium	[1930]	[1850]	[1760]	[1900]	[3010]	[3180]
Selenium	Šu	Šu.	5u	Śu	5u	วิน
Silver	411	4n	4 u	411	4u	4u
Sodium	9400	8780	16,100	16,800	76,400	76,500
Thallium	10u	10u	10u	10u	10ú	10u
Tin	22u	22u	22u	22u	22u	22u
Vanadium	7u	7u	7u	7 u	7 u	7 u
Zinc	23	[16]	28	23	77	38

u - The material was analyzed for, but was not detected. The masociated numerical value is the estimated sample quantitation limit.

^{[] -} Indicated concentration detected at less than contract required detection limits.

NR - Not analyzed for.

DRAFT COPY

PROSPECTOR SQUARE PARK CITY, UTAB SECOND ROUND SURFACE VATER DATA JULY, 1987 (ug/1)

SAMPLE NUMBER TRAFFIC NUMBER	PS-SV-4 NBG-688 DSSLVD	PS-59-4 NBG-687 TOTAL	PS-SV-5 MBG-689 TOTAL	PS-SV-5 MHG-690 DSSLVD	PS-SV-6 NEG-869 DESLVD	PS-SV-6 NHG-868 TOTAL
Aluminum	[17]	[21]	[198]	[26]	[19]	[22]
Antimony	25დ	25u	25น	[25]	25u	25u
Arsenic	10u	10u	12	10ս	11	12
Barium	[60]	[57]	[46]	[46]	[29]	[30]
Beryllium	1u	lu	1u	1u	1u	lu
Cadaium	17	12	7.1	6	4 U	41 <u>3</u>
Calcium	238,000	236,000	225,000	218,000	120,000	119,000
Chromium	4u	4 u	∔u	4u	4 u	4u
Cobalt	9u	9u	9u	9u	9ນ	9u
Copper	[10]	[7.1]	[16]	6 u	[11]	[18]
Cyanide	MR	10u	10u	NR	NR	10ս
Iron	[27]	[94]	75 9	[80]	[29]	[73]
Lead	50u	50u	161	6.2	5ង	13
Kagnesium	63,100	62,400	34,700	34,400	33,600	33,300
Mangenese	2970	2860	1050	960	23	31
Mercury	0.2u	0.4u	0.3	0.2u	0.2u	0.2u
Nickel	[8.5]	8u	[8.6]	8u	8u	8 u
Potessium	[4240]	[4200]	[3 98 0]	[3800]	[1790]	[1790]
Selenium	50u	50a	5u	5น	Su	5u
Silver	4u	[4.2]	[4]	4 u	4 u	4u
Sodium	40,600	39,800	49,400	48,000	16,800	16,200
Thallium	10u	10u	10u	10u	10u	10u
Tin	22u	22u	22u	22u	22u	22u
Vanadium	7 u	7 u	7u	7u	7u	7u
Zinc	3500	3410	2610	2380	24	26

u - The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.

^{[] -} Indicated concentration detected at less than contract required detection limits.

NR - Not analyzed for.

PROSPECTOR SQUARE PARK CITY, UTAH SECOND ROUND, SEDIMENT DATA JULY, 1987 mg/kg

SAMPLE NUMBER TRAFFIC NUMBER LOCATION	PS-SE-2 MHG-871 P/H DITCH	PS-SE-3 MHG-872 UPGRDNT	PS-SE-4 MHG-873 DNGRDNT	PS-SE-5 MHG-874 DNGRDNT	PS-SE-6 MHG-875 DUP SE-2
Aluminum	3540	43400	9640	3730	3320
Antimony	[38]	366	20uj	184	[34]
Arsenic	54	514	25	385	47
Barium	[58]	[682]	[93]	[96]	[44]
Beryllium	0.85u	[4]	[0.9]	0.77u	0.98u
Cadmium	14	123	14	63	11
Calcium	12,000	158,000	9260	27500	9080
Chromium	8.7j	115j	15j	14j	[5.3]j
Cobalt	7.6u	[38]	[9.7]	6.9u	8.8u
Copper	154	1200	58	400	117
Iron	6370	86300	13000	24000	5240
Lead	1640	19300	670	5000	1270
Magnesium	[2580]	65000	[3670]	886 0	[2440]
Manganese	431	4090	2050	1650	523
Mercury	6.6	14j	1.5j	7.2j	8.4j
Nickel	[8.8]	[99]j	[17]j	[14]	[8.9]j
Potassium	[642]	[8150]	[1520]	[569]	[672]
Selenium	4.2u	18u	4u	38u	4.9u
Silver	12j	110	[5.9]j	35 j	[9.5]j
Sodium	924u	3890u	865u	838uj	1070uj
Thallium	8.5u	36u	7.9u	7.7u	9.8u
Tin	19u	79u	17uj	17u	22u
Vanadium	[8.8]	[127]	[23]	[12]	6.9u
Zinc	2330	22900	3130	12800	1660
Cyanide	0.85 u j	10j	0.79uj	0.77u	0.98u

- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.
- $u\,$ The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- uj Detection limit is estimated because quality control criteria were not met.
- j The associated numerical value is an estimated quantity because the amount detected is below the required limits or because quality control criteria were not met.

SAMPLING ROUND III

U.S. ENVIRONMENTAL PROTECTION AGENCY SURFACE WATER DATA

EPA-SW-II

TABLE 1
PROSPECTOR SQUARE
PARK CITY, UTAH
AFRIL, 1988
INORGANIC ANALYTICAL RESULTS
SEDIMENT SAMPLING mg/kg
TDD PO8-8611-34G
CASE #9245

SAMPLE NUMBER TRAFFIC REPORT	75-5E-2 MHL-619			
	13,800	•		•
Antimony Arsenic				-
Barium	215	164		73.1
	[0.87]			
	28.9			
Cadmium Calcium	48,500	43 BOO		26,300
		31.5j		•
Chromium Cobalt	[11.7]	16 01	24.03 [7 5]	
	1.0uj			
	435j			
Iron		21,000		•
	3.340			
	12,000			
	1500			
Hercury		1.8		3.6
Nickel		15.8		[10.2]
	2330			
	8.3uj	•	6.0uj	-
Silver		15.4j	[2.7]]	31.6j
Sedium	•	•	[644]	2600
Thallium	1.2			
Vanadium	64.2			
Zinc	4890	3670	372	19,000
% Solids	48.2	56.0	66.7	71.4

- u The material was analyzed for, but was not detected. The associated numerical value is the contract required detection limit (CRDL).
- j The associated numerical value is an estimated quantity. Presence of the material is reliable.
- uj QC problems indicate a false negative result may exist.
- [] Compound is present and was detected. However, the quantity is below the contract required detection limit.

TABLE 2
PROSPECTOR SQUARE
PARK CITY, UTAB
APRIL, 1988
INORGANIC RESULTS
SURFACE VATER SAMPLING µg/1
TDD FO8-8611-34
CASE \$9245

SAMPLE NUMBER TRAPFIC REPORT	PS-SW-1 MRL-617	PS-SV-2 NHL-618	PS-SV-3 VRI-627	PS-SV-4 HBL-625	PS-SP-5 MHL-622
Aluminum	100u	100u	100u	100u	100u
Antimony	17น	17ช	17u	17u	17u
Arsenic	5.4	5.2	2.0u	28	5.2
Barium	[46] j	[31]j	466j	[66]]	[34]
Beryllium	2uj	2uj	2uj	2uj	2uj
Cadmitum	1.1uj	1.1j	1.luj	1.1 j	1.1uj
Calcium	77,200	91,500	71,100	69,800	97,300
Chromium	4u	4u	411	4u	4u
Cobalt	6u	6u	δu	- 6น	6u
Copper	[14]	[10]	[23]	[21]	[22]
Cyanide	10u	10 u	10u	10u	19
Iron	12 1 j	152 j	100ս յ	100uj	1115
Lead	17 j	111	3.5j	4-23	141
Magnesium	24,900	25,600	14,400	14,200	22,40G
Hanganese	284	106	260	207	165
Hercury	0.2u	0.2u	0.2u	0.2u	0.2u
Nickel	11u	11u	11u	11u	11u
Potessium	[1500]	[1200]	[1600]	[1900]	[1900]
Selegium	2u	2u	2u	2น	Žu
Silver	Suj	5uj	5uj	5uj	[5.5]
Sodium	17500	19400	112,000	110,000	54,600
Thallium	7uj	7uj	7uj	7u±	7นรู้
Vanadium	4u -	4 u	4u ~	4u	4u
Zine	[14]j	50j	136j	151 j	2 6 0j
Chloride	30	49	215	225	135
Sulfate	130	166	68	77.0	184
Alkalinity	172	170	102	100	140

u - The material was analyzed for, but was not detected. The associated numerical value is the contract required detection limit (CRDL).

j - The associated numerical value is an estimated quantity. Presence of the material is reliable.

uj - OC problems indicate a false negative result may exist.

^{[] -} Compound is present and was detected. However, the quantity is below the contract required detection limit.

SIIL-GW-I

Table 1 - Silver Creek Tailings, Park City, Utah

	< 400 < 1.1 0.096 < 1 < 1 340	MW01D < 400 < 1.1 0.089 1 19	#W12 < 400 < 1.1 0.052 < 1	400 I (1.1 I 0.027 I	MW02 < 400 < 1.1 0.053	MW03 < 400 < 1.1	MWO8 < 400 < 1.1	HW05	₩06 < 400 < 1.1	NW07 < 400 1.5	₩11 < 400	NW09 I	HW10
	< 400 < 1.1 0.096 < 1 < 1 340	< 400 < 1.1 0.089 1 19	< 400 < 1.1 0.052	< 400 < 1.1 0.027	< 400 < 1.1	< 400 < 1.1	I < 400 I	< 400 I	< 400 l	< 400 i	< 400 I		
	< 1.1 0.096 < 1 < 1 340	0.089	< 1.1 0.052	0.027	< 1.1	1 < 1.1						< 400 l	
IT-Barium (mg/l) O IBeryllium (ug/l) IT-Cadmium (ug/l) ICalcium (mg/l)	0.096 < 1 < 1 340	0.089 1 19	0.052 1	0.027			1 < 1.1 i	1 2 1		161			< 400 11
Beryllium (ug/l) T-Cadmium (ug/l) Calcium (mg/l)	< 1 < 1 340	1 19			0.053						1.5 (6.5 1	28.0 11
	< 1 340		< 1		J.000 ,	I 0.100	1 0.023 1	0.038	0.025 (0.021	0.068	0.053	0.110
	340 1			< 1	1 '	< 1		< 1 I	< 1 I	(11	< 1	< 1 ∣	< 1 II
			1 1	6 1	. 1 '	1 < 1	1 29 1	39 I	35 I	15 I	3 1	< 1 ∣	7 11
11Cb1a=1da /=a/1\		230 1	67 1	220 1	230 1	180	l 220 l	200 1	240 1	260 I	320 I	200 I	130 11
	924.9	379.9 I	37.5 I	132.5 H	357.4	1 344.9		125.0 I	132.5 H	110.0 I	155.0 I	147.5 I	92.4 11
	30.0 1 €	< 30.0 I	< 30.0 ∣	< 30.0 I	< 30.0 I	1 < 30.0	1 < 30.0 1	< 30.0 I	< 30.0 I	< 30.0 I	< 30.0 I	< 30.0 I	< 30.0 11
Cobalt (ug/l)	< 20 I	< 20 I	< 20 I	< 20 I	₹ 20	1 < 20	I < 20 I	< 20 I	< 20 ∣	(20 I	< 20 ∣	< 20 ∣	< 20 11
	20.0 1 €	< 20.0 ∣	< 20.0 ∣	< 20.0 1	< 20.0 I	1 < 20.0	1 < 20.0 1	< 20.0 I	< 20.0 I	< 20.0 I	< 20.0 €	< 20.0 I	< 20.0 11
	0.023 🤄	< 0.02 I	< 0.02 I	< 0.02 ∣	< 0.02 1	1 < 0.02	I < 0.02 I	< 0.02 ∤	< 0.02 I	< 0.02 1	< 0.02	< 0.02 ∣	< 0.02 11
	0.020	0.079 I	0.670 I	0.290 1	0.095 (1 < 0.020	I < 0.020 I	0.380	0.160	< 0.020 I	0.320	0.050	< 0.020 11
	< 5.0 l	< 5.0 l	< 5.0	< 5.0 1	< 5.0 €	1 (5.0)	1 < 5.0 1	< 5.0 1	< 5.0 1	< 5.0 1	< 5.0 I	< 5.0 1	30.0 11
Magnesium (mg/l)	60	44	18	39 1	44 1	1 36	1 32 1	34 1	33 (33	59 I	32	36 11
	94.0 1	430.0	43.0	300.0 1	110.0		1 420.0 1	120.0 I	440.0	240.0 I	570.0 I	1200.0 I	1100 .0
	< 0.2 1	< 0.2 1	< 0.2 ∣	(0.21	(0.2 ∣	1 < 0.2	1 (0.2	< 0.2 ∣	< 0.2 ∣	< 0.2 1	< 0.2	< 0.2	< 0.2 11
Potassium (mg/l)	3 1	2 1	1	7 1	2 '	1 2	7 1	4 1	5 1	6 1	2 1	3 į	3 11
	< 0.5	< 0.5	< 0.5	< 0.5	(0.5	1 (0.5	1 < 0.5 1	< 0.5 j	< 0.5 I	(0.5	< 0.5	< 0.5	< 0.5 !!
	< 2.0 l	< 2.0 l	< 2,0	< 2.0 1	< 2.0 I			< 2 <u>.</u> 0	< 2.0 l	< 2.0 l	< 2.0	< 2.0 ∣	< 2.0 1
Sodium (mg/l)	260 I	77 !	12 !	_53 (53 (110	1 48 1	54 (42 1	52 1	_42 1	64 1	45 11
[[Sulfate (mg/l)]	250	240	83	530 I	210	180	490	500 I	550	660 1	500	330 [230
T-Zinc (ug71)	25.0 I	19.0	40.0	1700.0 I	26.0	i < 15.0 i	1 2800.0 1	2100.0 I	1100.0 I	2000.0 1	18.0	< 15.0 I	1800.0

MW=Monitoring Well

Analyzed by: State Health Laboratory, Salt Lake City, Utah

Table 1 - Silver Creek Tailings, Park City, Utah

Sample Date: 08/31/87		!! !!
Parameter	DRO2	DRO1
	<pre>400 4.5 0.050 12000 150 40.0</pre>	400 13.5 0.025 1 32 250 150.0 < 30.0 < 20 < 20.0 < 20.0 < 5.0 980.0 < 0.2 0.860 < 5.0 550 53
T-Zinc (ug/l) ===================================	450.0 ========	3500.0

DR=Drain

SHL-GW-11

Silver Creek Tailings, Park City, Utah Sample Date: 11/30/87

Ground Water Samples

Pa rameter	MW1	MW1D	MW12	MW4	MW2	MW3	MW8	MW5	MW6	MW7	MW11	MW9	MW10	MW9D s
Tot. Alk. (mg/1)	137	114	119	104	121	154	57	80	57	59	200	218	223	216
Aluminum (ug/1)	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400
T-Arsenic (ug/1)	<1.1	<1.1	2.5	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	5.0	13.0	5.0
T-Barium (mg/1)	0.094	0.07	0.06	0.04	0.055	0.07	0.021	0.045	0.022	0.02	0.037	0.05	0.091	0.049
Beryllium (ug/1)	2	1	<1	2	<1	1	<1	1	<1	2	<1	<1	<1	<1
Bicarbonate (mg/1)	168	140	146	128	148	188	70	98	70	72	244	266	272	263
T-Cadmium (ug/1)	175	75	4	3	80	35	12	35	355	8	<1	<5	3	5
a Calcium (mg/1)	340	260	72	240	230	170	200	190	240	260	220	210	130	210
Carbonate (mg/1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chioride (mg/1)	884.9	450	83.9	130	362.4	299.9	132	105	130	110	170	135	96.9	138
T-Chromium (ug/1)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cobalt (ug/1)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
T-Copper (ug/1)	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20. 0	<20.0	<20.0	<20.0	<20.0	<20.0
Cyanide (mg/1)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
MT-Iron (mg/1)	0.95	0.051	<0.02	0.12	0.033	<0.02	<0.02	0.086	1.5	0.044	<0.02	0.26	0.021	0.25
T-Lead (ug/1)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	15.0	<5.0
Magnesium (mg/1)	63	52	20	39	46	34	26	34	32	31	38	33	39	33
T-Manganese(ug/1)	90.0	75	8.0	1800.0	30.0	6.0	430.0	260.0	280.0	68.0	240.0	1500.0	420.0	1600.0
Mercury (ug/1)	<0.2	<0.2	0.3	<0.2	0.2	<0.2	0.25	0.2	<0.2	0.2	0.37	0.2	0.2	0.2
T-Nickel (ug/1)	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	10.0	<10.0	10.0	15.0	<10.0	<10.0	<10.0	<10.0
Potassium (mg/1)	3	2	<1	6	2	2	6	3	4	6	2	3	2	3
T-Selenium (ug/1)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
T-Silver (ug/1)	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Sodium (mg/1)	280	88	10	51	54	110	44	48	40	51	35	60	41	60
Sulfate (mg/1)	270	270	84	540	210	200	430	470	540	640	300	340	190	330
T-Zinc (ug/1)	69.0	<20.0	<20,0	640.0	41.0	<20.0	2700.0	930.0	1400.0	2400.0	<20.0	<20.0	680.0	<20.0

NOTE: MW9D is a Duplicate Sample for MW9

Silver Creek Tailings, Park City, Utah Sample Date: 11/30/87

Drain Samples

Parameter	DR1	DR2	DR3	DR4	DR5
Tot. Alk. (mg/1)	104	313	3	-	-
Aluminum (ug/1)	<400	<400	<400	<400	<400
T-Arsenic (ug/1)	5↓5	7.5	<0.5	8.0	<1.1
T-Barium (mg/1)	0.021	0.069	<0.005	<0.005	<0.005
Beryllium (ug/1)	<1	<1	<1	9	<1
Bicarbonate (mg/1)	128	382	4	-	-
T-Cadmium (ug/1)	15	1	<1	3	<1
Calcium (mg/1)	240	240	<1	-	- }
Carbonate (mg/1)	0	0	0	-	- j
Chloride (mg/1)	156	172.5	<1	-	-
T-Chromium (ug/1)	<5.0	<5.0	<5.0	10.0	<5.0
Cobalt (ug/1)	<20	<20	24	<20	<20
T-Copper (ug/1)	<20.0	<20.0	<20.0	<20.0	<20.0
Cyanide (mg/1)	<0.02	<0.02	<0.02	-	-
T-1 ron (mg/1)	0.29	6.1	<0.02	<0.02	<0.02
T-Lead (ug/1)	<5.0	<5.0	<5.0	10.0	< 5.0
Magnesium (mg/1)	32	47	<1	-	-
T-Manganese (ug/1)	630.0	2000.0	<5.0	9.0	<5.0
Mercury (ug/1)	<0.2	<0.2	<0.2	0.3	<0.2
T-Nickel (ug/1)	10.0	<10.0	<10.0	10.0	<10.0
Potassium (mg/1)	4	3	<1	_	- 1
T-Selenium (ug/1)	<0.5	<0.5	<0.5	4.0	<0.5
T-Silver (ug/1)	<2.0	<2.0	<2.0	<2.0	<2.0
Sodium (mg/1)	51	44	<1	-	-]
Sulfate (mg/1)	500	270	1	-	-)
T-Zinc (ug/1)	2700.0	240.0	<20.0	<30.0	<u>~20.0</u>

NOTE: DR3 is a Rinsate Blank Sample DR4 is a Performance Evaluation Sample DR5 is a Field Blank Sample

SHL-GW-II

Silver Creek Tailings, Park City, Utah Sample Date: 2/24/88

Ground Water Samples

Parameter	MW1D	MW12	MW4	MW2	MW3	MW8	MW5	MW5D	MW6	MW7	MW7D	MW11	MW11D	MW11D2	MW9	MW10	MW13	MW14 P
Tot. Alk. (mg/1)	113	117	97	121	155	59	104	114	56	56	119	177	170	171	196	203	689	534
Aluminum (ug/1)	<200	<200	<200	<200	<200	<200	<200	460	<200	<200	<200	<200	<200	<200	<200	<200	780	<200
T-Arsenic (ug/1)	<1	2	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1.	1	2	11	<1	<1 8
T-Barium (mg/1)	0.063	0.059	0.043	0.054	0.071	0.017	0.031	0.082	0.026	0.016	0.035	0.029	0.052	0.052	0.035	0.075	0.072	0.087
Beryllium (ug/1)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
T-Cadmium (ug/1)	<1	1	2	<1	<1	14	<1	<1	6	8	<1	<1	<1	<1	<1	2	<1	<1 🛮
Calcium (mg/1)	260	73	230	240	160	190	210	110	220	240	44	180	92	86	170	120	270	220
Chloride (mg/1)	499.9	37	262.4	3 59.9	309.9	135	90	34.9	127	120	12	178	38.9	38	151	101	12	53.9
T-Chromium (ug/1)	<5	<5	<5	<5	<5	14	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	100	125
Cobalt (ug/1)	<20	<20	<20	<20	<20	<5	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
T-Copper (ug/1)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	23	<20	<20	<20	<20	<20	<20
Cyanide (mg/1)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
T-Iron (mg/1)	<0.02	0.028	0.091	0.025	0.027	0.022	0.02	0.26	<0.02	0.13	0.065	0.12	0.99	0.026	0.61	0.028	<0.02	0.026
T-Lead (ug/1)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	15	<5	<5
Magnesium (mg/1)	48	19	40	43	31	27	37	27	29	29	12	37	24	24	30	35	<1	<1
T-Manganese(ug/1)	16	<5	2700	64	7	110	100	470	85	32	160	140	480	470	850	380	<5	<5
Mercury (ug/1)	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.25	8.3	<0.2	<0.2	<0.2	<0.2	0.3	14.9	<0.2	<0.2
T-Nickel (ug/1)	<10	<10	10	<10	<10	<10	<10	<10	<10	15	<10	<10	<10	<10	<10	<10	<10	<10
Potassium (mg/1)	2	1	7	2	2	6	2	2	4	5	1	2	1	2	2	2	5	6
T-Selenium (ug/1)	<5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05则
T-Silver (ug/1)	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Sodium (mg/1)	88	10	80	50	110	39	40	16	38	51	12	28	16	15	50	35	14	32
Sulfate (mg/1)	250	94	450	200	180	410	500	250	500	590	45	250	130	130	270	160	12	63
T-Zinc (ug/1)	44	<u>71</u>	400	89	52	2100	97_	59	1100	2100	42	47	39	29	51_	610	60	66

NOTE: MW11D2 IS A DUPLICATE SAMPLE FOR MW11D MW5 WAS ANALYZED FOR VOLATILE ORGANICS BUT NONE FOUND

Silver Creek Tailings, Park City, Utah Sample Date: 2/24/88

Drain Samples

Parameter	DR1	DR2	DR3	
(Tot. Alk. (mg/1)	114	2.0	0	¥ !
FAluminum (ug/1)	<200	<200	<200	li li
IT-Arsenic (ug/1)	7	<1	10	ž:
HT-Barium (mg/1)	0.022	<0.005	<5	£3
Beryllium (ug/1)	<1	<1	10	ti ti
T-Cadmium (ug/1)	8	<1	2	[]
(Calcium (mg/1)	210	<1	2	[]
Chloride (mg/1)	190	<1	2	li li
T-Chromium (ug/1)	<5	<5	10	11
Cobalt (ug/1)	<20	<20	<20	
FT-Copper (ug/1)	<20	<20	<20	13
(Cyanide (mg/1)	<0.02	<0.02	-	<u> </u>
HT-Iron (mg/1)	0.48	0.41	<20	H
T-Lead (ug/1)	<5	<5	<5	- 11
Magnesium (mg/1)	30	<1	<1	Į.
[T-Manganese(ug/1)	840	< 5	9	13
Mercury (ug/1)	<0.2	<0.25	<0.55	H
T-Nickel (ug/1)	<10	<10	. 10	ij
Potassium (mg/1)	t ₄	<1	<1	H
AT-Selenium (ug/1)	0.5	<0.5	3	
T-Silver (ug/1)	<2	<2	<2 ,	Ħ
Sodium (mg/1)	73	<1	<1	ឆ្ន
Sulfate (mg/1)	400	<1	1	H
T-Zinc (ug/1)	1900	42	53	

NOTE: DR2 IS A RINSATE BLANK SAMPLE DR3 IS A PERFORMANCE EVALUATION SAMPLE

	BLIND SPIKE SOLUTI		AS A ASE GIRBALUS AND STORY ING STORY AS A A
	COMPARATABILITY ST		TAIC CINES CON MAY
,	THE THIRD ROUND OF AT PARK CI		ING WORSE OF STAN
PARAMETER	TRUE VALUE	AVERAGE	AS A ASE BILLED CARRY ING 95% CONFIDENCE INTERVAL
Aluminum	· 50	52.26	42.3-62.3
Arsenic	10	9.92	7.72-12.1
Beryllium	10	9.89	8.61-11.2
Cadmium	2.5	2.38	1.99-2.77
Cobalt	10	9.90	8.55-11.3
Chromium	10	9.81	7.77-11.8
Copper	10	10.02	8.78-11.3
Iron	10	10.09	8.33-11.9
Mercury	.5	. 490	.338642
Manganese	10	9.92	8.76-11.1
Nickel Lead	10 10	9.99	8.41-11.6
Lead Selenium	2.5	9.96 2.31	8.28-11.6
Vanadium	2.5 25	25.6	1.50-3.12 21.3-29.9
Vanadium Zinc	10	10.07	8.59-11.5

⁻⁻ All values are expressed as µg/l.

SHL-GW-IV

Silver Creek Tailings, Park City, Utah Sample Date: 4/11/88

Ground Water Samples

Parameter Parameter	MW1S	MW1D	MW12	MW2	MW3	MW8	MW4	MW5	MW5D	MW7	MW7D	MW6	MW9	MW10	MW11	MW11D
MTot. Alk. (mg/1)	138	113	119	121	150	56	60	63	115	58	123	55	212	227	170	170
[Aluminum (ug/1)	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400	<400
T-Arsenic (ug/1)	<1	1.5	<1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	2.5	14	<1	<1 ₩
製T-Barium (mg/1)	0.1	.065	0.06	0.054	.076	.022	.022	0.032	0.067	0.014	0.046	0.022	.043	0.091	.025	0.051
Beryllium (ug/1)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bicarbonate (mg/1)	169	138	145	147	184	68	74	77	141	71	150	67	259	277	208	208
∰T-Cadmium (ug/1)	<1	<1	<1	<1	<1	22	8	50	<1	<1	<1	8	<1	7	<1	<1 🛭
(Calcium (mg/1)	320	260	70	220	170	230	190	180	110	230	43	230	220	150	190	89 💆
Carbonate (mg/1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 🖫
Chloride (mg/1)	899.9	534.9	39.5	364.9	349.9	171	153	130	31.9	120	12.3	138	227.5	115	187.5	39 💆
MT-Chromium (ug/1)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 🖁
Cobalt (ug/1)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
MT-Copper (ug/1)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20 [4]
〖Cyanide (mg/1)	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Mator (mg/1)	<0.02	<0.02	<0.02	<0.02	0.17	<0.02	<0.02	<0.02	<0.02	<0.02	.026	<0.02	0.95	<0.02	<0.02	<0.02∰
鋼T-Lead (ug/1)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	20	<5	<5
KMagnesium (mg/1)	55	49	20	42	32	30	33	32	26	28	11	30	37	41	34	24
NT-Manganese(ug/1)	22	12	<5	<5	13	120	46	44	86	11	420	57	1100	1200	120	250
Mercury (ug/1)	0.23	0.23	<0.2	2.6	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.023	<0.2	<0.2
NT-Nickel (ug/1)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	3	2	<1	2	2	6	7	4	1	5	<1	4	2	2	2	1 🛚
NT-Selenium (ug/1)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
T-Silver (ug/1)	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2 ▮
Sodium (mg/1)	270	87	10	49	110	49	52	50	15	49	11	40	66	43	28	16
Sulfate (mg/1)	240	240	90	210	180	520	470	460	240	580	44	530	330	250	240	130 🖁
T-Zinc (ug/1)	<20	<20	<20	<20	26	2900	2400	1900	<20	2100	<20	1600	<20	1800	<20	<20 H

Silver Creek Tailings, Park City, Utah Sample Date: 4/11/88

Parameter	MW1A	MW18	MW1C	MW11B	MW11D1	DR1 3
Tot. Alk. (mg/1)	1.0	3.0	1.0	3.0	169	91
(Aluminum (ug/1)	<400	<400	410	<400	<400	<400
T-Arsenic (ug/1)	7.5	<1	99.5	<1	<1	<1 8
NT-Barium (mg/1)	<.005	<.005	<.005	<.005	. 053	.018
Beryllium (ug/1)	10	<1	99	<1	<1	<1 ₺
Bicarbonate (mg/1)	2	4	2 :	3	206	111
T-Cadmium (ug/1)	2	<1	22	<1	<1	19
Calcium (mg/1)	<1	<1	<1	<1	90	250
Carbonate (mg/1)	0	0	0	0	0	0 📓
Chloride (mg/1)	<1	<1	11	2.5	40.5	172.5
T-Chromium (ug/1)	10	<5	100	<5	<5	<5 🕻
Cobait (ug/1)	<20	<20	98	<20	<20	<20 №
T-Copper (ug/1)	<20	<20	89	<20	<20	<20 ⅓
Cyanide (mg/1)	<0.02	<0.02	-	<0.02	<0.02	<0.02 ₺
AT-Iron (mg/1)	<0.02	<0.02	0.1	<0.02	<0.02	<0.12
HT-Lead (ug/1)	10	<5	105	<5	<5	<5 ₺
Magnesium (mg/1)	<1	<1	<1	<1	24	33 N
[T-Manganese (ug/1)	9	<5	89	< 5	260	530
Mercury (ug/1)	0.41	<0.2	4.8	<0.2	<0.2	<0.2 ₩
T-Nickel (ug/1)	<10	<10	100	<10	<10	<10 🗓
Potassium (mg/1)	<1	<1	<1	<1	1	4 🖁
T-Selenium (ug/1)	<0.5	<0.5	21	<0.5	<0.5	<0.5 🛭
T-Silver (ug/1)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Sodium (mg/1)	<1	<1	<1	1	16	52 🖁
Sulfate (mg/1)	<1	<1	<1	1	130	510
T-Zinc (ug/1)	<20	<20	180	<20	<20	2800

NOTE: MW1A is a Performance Evaluation Sample (Lower Range)
MW1C is a Performance Evaluation Sample (Higher Range)

MW1B is a Field Blank Sample MW11B is a Rinsate Blank Sample

MW11D1 IS A DUPLICATE SAMPLE FOR MW11D

BLIND SPIKE SOLUTION PREPARED AS A COMPARATABILITY STANDARD FOR CASE THE FOURTH ROUND OF WATER SAMPLING AT PARK CITY, UTAH

PARAMETER	TRUE VALUE	AVERAGE	95% CONFIDENCE INTERVAL
Aluminum (low)		52.26	
Aluminum (high)	500	506.0	427-585
Arsenic (low)			7.72-12.1
		99.2	80.0-118
Beryllium (low)		9.89	
Beryllium (high)	100	99.4	88.7-110
	2.5	2.38	1.99-2.77
Cadmium (high)		24.4	21.2-27.7
Cobalt (low)		9.90	8.55-11.3
Cobalt (high)		99.5	
Chromium (low)		9.81	7.77-11.8
Chromium (high)	100	99.8	84.4-115
Copper (low)	10	10.02	8.78-11.3
	100		89.4-109
Iron (low)	10	10.09	8.33-11.9
	100	100.2	82.7-118
	.5	. 490	.338642
	5.0	5.05	3.85-6.25
Manganese (low)		9.92	8.76-11.1
Manganese (high)		98.8	88.4-109
Nickel (low)	10	9.99	8.41-11.6
Nickel (high)	100	100.4	88.0-113
Lead (low)	10	9.96	8.28-11.6
Lead (high)	100	100.1	85.1-115
	2.5	2.31	1.50-3.12
Selenium (high)	25	22.8	17.4-28.3
Vanadium (low)	25	25.6	21.3-29.9
Vanadium (high)	250	250.90	220-282
Zinc (low)	10	10.07	8.59-11.5
Zinc (high)	100	99.8	89.0-111

⁻⁻ Statistics provided by Environmental Monitoring and Support Laboratory - Cincinnati

⁻⁻ U.S. EPA QC samples used were (low - Trace Metal I, 6020, WP386 and High - Trace Metal - I, 7248, WP287)

⁻⁻ All values are expressed as µg/l

⁻⁻ Two spiked solutions were prepared for the fourth round of sampling as "low" and "high", both values are listed across from their respective parameter, low values on top.

SHL-SW-I

Sample Location Description

Silver Creek Tailings

Sample Number	Sample Location
87125	Silver Creek below Prospector Square
87126	Silver Creek below Wyatt Earp Drive
87127	Silver Creek at Bonanza Drive
87128	Silver Creek at Bonanza Drive
87129	Pace-Homer Ditch below Prospector Square.
87130	Pace-Homer Ditch at Park Meadows collection box

Note: 87125, 87126, 87127, 87128, 87129, and 87130 are unfiltered samples.
87125A, 87126A, 87127A, 87128A, 87129A, and 87130A are filtered samples.
87125B, 87127B, and 87129B are sediment samples.

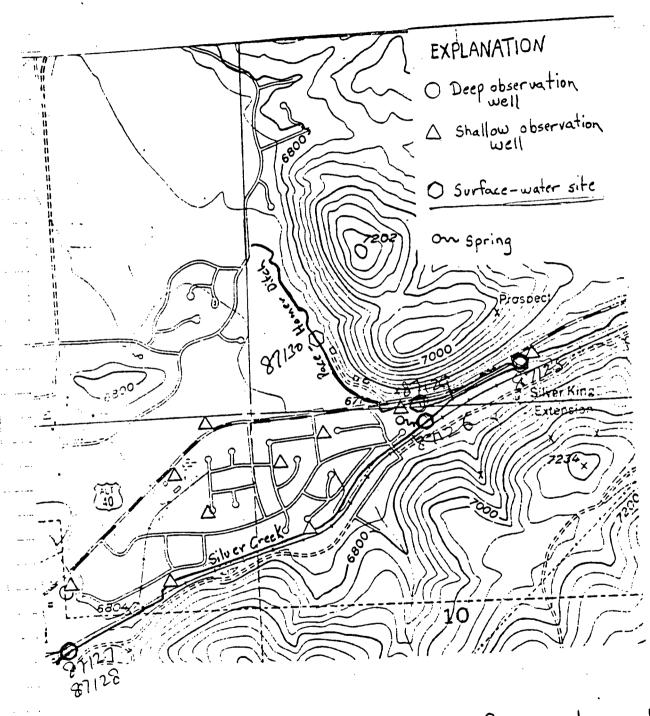


Figure 3. - Approximate locations of ground - and surface - water monitoring sites.

Table 1 Silver Creek Tailings

:==::====	=========	:=====::::	=========		:=======	::::::::::		
Surface Water Samples								
ľ	(unfiltered)							
CW87131 I	CW87130	CW87129	CW87128 (CW87127 I	CW87126	CW87125		
						145		
						1028		
						120		
		15.5				98.0		
< 0.02 1	< 0.02	< 0.02	(0.02	< 0.02 I	< 0.02	< 0.02		
·	180	170	110	110				
200 l	< 200 ∣	< 200	570 I	580 I	500 (< 200		
< 1.1	10.5	7.5	18.5	18.0 /	14.0	10.0		
< 0.005 I	0.051	0.025	0.090	0.091	0.080	0.044		
(1)	< 1	(1	(1)	< 1	< 1	< 1		
{ 1 	< 1	< 1	161	5 !	4	6		
(5.0 i	< 5.0	< 5.0	< 5.0 1	< 5.0	< 5.0	< 5.0		
(20	< 20 €	< 20	< 20 I	< 20 I	< 20 ∣	< 20		
< 20.0 1	< 20.0	< 20.0	40.0 1	38.0 (31.0	< 20.0		
(0.020 1	0.082	0.061	1.600	1.600	1.100	0.580		
(5.0)	< 5.0	30.0	640.0	700.0	430.0	165.0		
i (1	31	30	16 1	16 i	16	27		
(5.0 l	170.0	82.0	290.0	290.0	350.0	410.0		
0.15	0.25	0.75	1.40 i	0.75	0.55	0.65		
< 10.0 I	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0		
< 1	2	2	3 1	3 1	3 1	3		
< 0.5 1	< 0.5	· < 0.5	< 0.5	< 0.5 1	2.0	< 0.5		
(2.0 1	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0		
(1)	17	22	96 1	97 (45		
< 15.0 l	31.0		860.0	870.0	560.0	780.0		
	5.6 2 2 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1	CW87131 CW87130 5.6 8.0 2 164 2 754 <1 91 <1.0 27.0 <0.02 <0.02 <1 180 <200 <200 <1.1 10.5 <0.005 0.051 <1 <1 <1 <1 <5.0 <5.0 <20 <20 <20 <20 <1 <1 <5.0 <5.0 <20 <20 <20 <20 <20 <20 <1 <20 <1 <1 <1 <1 <5.0 <5.0 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <21 <21 <22 <22 <23 <24 <25 <25 <26 <27 <27 <27 <27 <28 <28 <29 <29 <20 <20 <20 <21 <21 <22 <22 <23 <24 <25 <25 <26 <27 <27 <27 <27 <27 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28 <28	CW87131 CW87130 CW87129 5.6 8.0 8.1 2 164 175 2 754 845 < 1 91 100 <1.0 27.0 15.5 < 0.02 < 0.02 < 0.02 < 1 180 170 < 200 < 200 < 200 < 1.1 10.5 7.5 < 0.005 0.051 0.025 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 5.0 < 5.0 < 5.0 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	CW87131 CW87130 CW87129 CW87128 5.6 8.0 8.1 8.3 2 164 175 98 2 754 845 1022 < 1 91 100 77 < 1.0 27.0 15.5 54.9 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 1 180 170 110 < 200 < 200 < 200 570 < 1.1 10.5 7.5 18.5 < 0.005 0.051 0.025 0.090 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 5.0 < 5.0 < 5.0 < 5.0 < 0.020 < 200 < 200 < 200 < 200 < 200 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 1 & 1 < 1 & 2 & 3 < 0.5 & 0.5 & 0.5 & 0.5 < 2.0 & 2.0 & 2.0 & 2.0 < 1 & 17 & 22 & 96	CW87131 CW87130 CW87129 CW87128 CW87127 5.6 8.0 8.1 8.3 8.3 2 164 175 98 100 2 754 845 1022 1030 <1 91 100 77 77 <1.0 27.0 15.5 54.9 173 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <1 180 170 110 110 110 <200 <200 <200 <200 570 580 <1.1 10.5 7.5 18.5 18.0 <0.005 0.051 0.025 0.090 0.091 <1 <1 <1 <1 <1 <1 <1 <1 <1	(unfiltered) CW87131 CW87130 CW87129 CW87128 CW87127 CW87126 5.6 8.0 8.1 8.3 8.3 8.3 2 164 175 98 100 95 2 754 845 1022 1030 1031 < 1 91 100 77 77 78 < 1.0 27.0 15.5 54.9 173 174 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 1 180 170 110 110 120 < 200 < 200 < 200 570 580 500 < 1.1 10.5 7.5 18.5 18.0 14.0 < 0.005 0.051 0.025 0.090 0.091 0.080 < 1.1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1		

Table 2 Silver Creek Tailings

=======	========	=======	*******		========
1		Surface W	ater Sampl	les	
ł					
+					
ICW87131A	ICW87130A	CW87129A	CW87127A	ICW87126A	CW87125A
1 00	8.1	7.9	1 8-2	8.4	7.8
					1 120
I NM	I NM				1 41.0
1 49	1 < 1	(1	(1	< 1	1 < 1
41.0	1 < 1.0	1 < 1.0	1.0	1 2.0	1 4.0
45.0	1 < 5.0	1 < 5.0	(5.0	1 < 5.0	1 < 5.0
1 40	I < 20	1 < 20	I < 20	I < 20	1 < 20
1 47.0	1 < 20.0	1 < 20.0	1 < 20.0	1 < 20.0	1 < 20.0
45.0	1 32.0	1 580.0	1 40.0		1 < 20.0
60.0	I < 5.0	1 5.0	1 10.0	10.0	10.0
(1	1 31	1 31	1 15	i 17	1 27
1 50.0	170.0	75.0			
		0.25			
	< 10.0				1 < 10.0
	1 2	1 2	1 3	1 3	1 2
				1.0	1 < 0.5
(2.0					1 < 2.0
1 2					1 44
55.0	1 33.0	1 52.0	1 59.0	70.0	1 590
	QO QO QO S QO S QO S QO S QO S QO S QO QO	QO 8.1 QO 745 8 91 210 200 45.0 12.5 5.0 50.0 NM NM 49 1.0 41.0 1.0 45.0 5.0 40 20 47.0 20 47.0 20 47.0 32.0 60.0 5.0 31 50.0 170.0 2.34 0.20 45.0 170.0 2.34 0.20 45.0 10.0 2.34 0.20 45.0 10.0			CW87131A CW87130A CW87129A CW87127A CW87126A CW87131A CW87130A CW87129A CW87127A CW87126A CW87131A CW87130A CW87129A CW87127A CW87126A CW87131A CW87126A CW87127A CW87126A CW87126A CW87126A CW87127A CW87127A CW87127A CW87127A CW87126A CW87127A CW87127A

Table 3 Silver Creek Tailings

		========	=======================================					
Sediment Samples								
Parameter	CW87129B	ICW87127B	ICW87125B					
11% Solids	20.8	56.1	59.5					
IIT-Arsenic	1 190.0	180.0	i 300.0 l					
Aluminum	1 28000	l 21000	1 16000 I					
IIT-Barium	1 210.0	1 180.0	1 37.0 1					
IIT-Cadmium	1 32.0	1 29.0	72.0 1					
!IT-Chromium	1 49.0	1 49.0	1 31.0 I					
IICobalt	10.0	1 8.6	8.0					
IIT-Copper	1 360.0	1 240.0	1 360.0 1					
T-Iron	1 25000.0	1 22000.0	1 30000.0 1					
IIT-Lead	1 3600.0	1 4500.0	1 4300.0 I					
IIT-Manganese	1500.0	1 1400.0	1 1300.0 1					
liMercury	1 7.0	1 2.5	1 5.5 1					
IIT-Nickél	18.0	1 15.0	1 13.0 1					
IIT-Selenium	1 < 40.0	1 < 13.0	< 12.0					
HT-Silver	1 26.0	1 21.0	31.0					
IIT-Zinc	4500.0	1 4000.0	1 9300.0					

Table A

Surface Water Sampling Locations Description Silver Creek Tailings Park City, Utah

Sample Number	Sample Locations
CW87150	Silver Creek Below Prospector Square
CW87151	Silver Creek Below Wyatt Earp Drive
CW87152	Silver Creek at Bonanza Drive
CW87153	Silver Creek at Bonanza Drive
CW87154	Pace-Homer Ditch Below Prospector Square
CW87155	Pace-Homer Ditch at Park Meadows Collection Box

Note: 87150, 87151, 87152, 87153, 87154, and 87155 are unfiltered samples. 87150A, 87151A, 87152A, 87153A, 87154A, and 87155A are filtered samples. 87150B, 87151B, 87152B, 87153B, 87154B, and 87155B are sediment samples.

Table 1

Silver Creek Tailings Park City, Utah

Surface Water Samples -- Unfiltered Sample Date: 8-30-87

Samples Analyzed by: State Health Laboratory Salt Lake City, Utah

Parameter (ug/l	<u>CW7155</u>	CW87154	CW87153	CW87152	CW87151	CW87150
T-Arsenic	19.0	13.0	7.5	7.0	3.5	16.0
T-Barium	23.0	31.0	52.0	51.0	62.0	47.0
T-Cadmium	<1.0	4.0	<1.0	<1.0	16.0	7.0
T-Chromium	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
T-Copper	56.0	<20.0	<20.0	<20.0	<20.0	22.0
T-Iron	85.0	57.0	120.0	110.0	72.0	79.0
T-Lead	<5.0	<5.0	20.0	10.0	<5.0	105.00
T-Manganese	83.0	33.0	12.0	13.0	2900.0	1000.0
Mercury	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
T-Selenium	<0.5	<5.0	<5.0	<5.0	<5.0	<5.0
T-Silver	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
T-Zinc	100.0	240.0	120.0	57.0	3300.0	2500.0

Table 2

Silver Creek Tailings Park City, Utah

Surface Water Samples -- Filtered Sample Date: 8-30-87

Samples Analyzed by: State Health Laboratory Salt Lake City, Utah

Parameter	CW7155A	CW87154A	CW87153A	CW87152A	CW87151A	CW87150A
(ug/1	CW/133A	_CN0/134A	CWOTTSSA	CWOTTSZA	CWOTISTA	CWOTTOUM
T-Arsenic	18.5	12.5	6.0	7.0	3.2	9.5
T-Barium	22.0	30.0	51.0	51.0	62.0	49.0
T-Cadmium	<1.0	<1.0	<1.0	1.0	17.0	7.0
T-Chromium	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
T-Copper	30.0	<20.0	<20.0	<20.0	<20.0	<20.0
T-Iron	<20.0	<20.0	<20.0	<20.0	<20.0	81.0
T-Lead	<5.0	<5.0	20.0	10.0	<5.0	105.00
T-Manganese	57.0	11.0	11.0	11.0	2900.0	970.0
T-Selenium	<0.5	<5.0	<5.0	<5.0	<5.0	<5.0
T-Silver	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
T-Zinc	<15.0	26.0	<15.0	30.0	3300.0	2300.0

Table 3

Silver Creek Tailings Park City, Utah

Sediment Samples
Sample Date: 8-30-87

Samples Analyzed by: State Health Laboratory Salt Lake City, Utah

Parameter (mg/l)	CW87154B	CW87153B	CW87152B	CW87151B	_CW87150B
% Solids	27.5	57.7	49.1	45.8	58.4
T-Arsenic	220.0	140.0	210.0	110.0	370.0
Aluminum	20000.0	12000.0	16000.0	30000.0	6300.0
T-Barium	150.0	150.0	180.0	170.0	6.7
Beryllium	1.0	1.0	1.2	1.4	0.4
T-Cadmium	43.0	29.0	34.0	24.0	83.0
T-Chromium	38.0	41.0	43.0	44.0	19.0
Cobalt	6.0	8.0	10.0	12.0	8.0
T-Copper	430.0	170.0	250.0	69.0	580.0
T-Iron	22000.0	23000.0	26000.0	24000.0	32000.0
T~Lead	4600.0	3200.0	4300.0	960.0	7700.0
T-Manganese	1100.0	1300.0	1300.0	2200.0	1700.0
Mercury	16.0	3.6	3.7	2.2	6.5
Molybdenum	<26.0	<10.0	<12.0	<16.0	<7.0
T-Nickel	<26.0	13.0	22.0	22.0	9.0
T-Selenium	<52.0	<21.0	<25.0	<32.0	.15.0
T-Silver	36.0	15.0	22.0	5.3	51.0
Vanadium	51.0	47.0	49.0	55.0	18.0
T-Zinc	7400.0	4500.0	5300.0	3300.0	15000.0

S42-SW-1

T A B L E 1 Silver Creek Tailings, Park City, Utah SURFACE WATER SAMPLES-UNFILTERED Sample Date: 04/13/88

Ī	Parameter	Pace	Homer at	Pace Homer at	Silver Creek	Silver Creek at	Silver Cree
1	1	Park	Meadows	Diversion	Below Prosector	Wyattearp Drive	at Bonzana
1		Co11	<u>ection Box</u>	<u> </u>	Square		Drive
	Tot. Alk. (mg/l)		186	185	152	109	1(
	Aluminum (ug/l)		<400	<400		450	· <4(
	T-Arsenic (ug/l)		5.5	3.5		5.5	2.
	T-Barium (mg/1)		0.055				0.0
	Beryllium (ug/l)		<1	<1	<1	<1	• !
	Bicarbonate (mg/l)		227	225	185	133	10.
	T-Cadmium (ug/l)		<1	<1	1	4	∢ !
	Calcium (mg/l)		86	100	110	81	· · · · · · · · · · · · · · · · · · ·
	Carbonate (mg/l)		0	0	0	0	!
	Chloride (mg/l)	•	29.9	4:		259.5	267.
	T-Chromium (ug/1)	-	<5.0	<5.0		<5.0	<5.(
	Cobalt (ug/l)		<20	<20		<20	< ?
	T-Copper (ug/l)		<20.0				<20.
	Cyanide (mg/l)		<0.02				<0.(
	T-Iron (mg/l)		0.083	0.057			<0.0
	T-Lead (ug/l)		<5.0	10.0		05	<
	Magnesium (mg/l)		27	28	26	17	, 1
	T-Manganese(ug/l)		310	120		310	<5
	Mercury (ug/l)		<0.2	<0.2		<0.2	<0.
	T-Nickel (ug/l)		10.0	<10.	0 <10.0	<10.0	<10.
	Potassium (mg/l)		3	2	3	3	
	T-Selenium (ug/l)		<0.5	<0.5		<0.5	<0.
	T-Silver (ug/l)		<2.0	<2.0		<2.0	<2.
	Sodium (mg/l)		2 0	22	66	130	13
	Sulfate (mg/l)		140	170		89	. 8
_ [T-Zinc (ug/l)		<20	<u>, 6</u>	100	440	<u>E</u>

NOTE:

TABLE 2

Silver Creek Tailings Park City, Utah

Surface Water Samples -- Filtered Sample Date: 04-13-88

Parameter	Pace Homer Park Meadows Collection Box	Pace Homer Diversion	Silver Creek BELOW Prospector Square	Silver Creek Wyattarp Drive	Silver Creek at Bonzana Drive
T-Arsenic	5.5	2.5	5.5	1.5	2.5
⊒T-Barium	52	36	39	7.4	81
Beryllium	<1	<1	<1 <1	<1	<1
T-Cadmium	<1	<1	<1	<1	<1
T-Chromium	<5	< 5	< 5	< 5	< 5
Cobalt	<20	<20	<20	<20	<20
-Copper	<20	<20	<20	<20	<20
T-Iron	21	20	20	20	20
a −Lead	<5	<5	<5	<5	<5
. Manganese	290	110	170	220	270
Mercury	<0.2	<0.2	<0.2	<0.2	<0.2
Mickel	<10	<10	<10	<10	<10
T-Selenium	<0.5	<0.5	<0.5	<0.5	<0.5
T-Silver	<2	<2	<2	<2	<2
T-Zinc	29	62	270	170	150

●5582-8

TABLE 3

Silver Creek Tailings Park City, Utah

Sediment Samples Sample Date 4-13-88

Parameter (mg/1)	Pace Homer at Diversion	Silver Creek BELOW Prospector Square	Silver Creek at Wyattearp Drive	Silver Creek at Bonzana Drive	
%Solids	55.6	64.5	66.9	73.4	
T-Arsenic	200	370	100	93	
Aluminum	2000	110	29,000	1780	
T-Barium	170	6	140	200	
Beryllium	1.2	6.6	1.5	1.5	
T-Cadmium	31	140	14	15	
T-Chromium	72	30	43	75.5	
Cobalt	12	8	~ 11	6.5	
T-Copper	440	1400	63	.93	
T-Iron	3500	30,000	29,000	2000	
T-Lead	3100	12,000	380 -	1300	
T-Manganese	1300	1900	410	1800	
Mercury	6.7	3.4	0.4	1.2	
T-Nickel	<20	<20	18	<20	
T-Selenium	<20	<20	<20	<20	
T-Silver	20	86	3	6.8	
T-Zinc	4700	30,000	720	2100	

NOTE: No Sediment sample was available for collection from the Pace Homer Ditch at the collection box location.

5582-9